
Decision Making and Visualizations Based on Test Results
Per Erik Strandberg

Westermo R & D AB, Sweden
per.strandberg@westermo.se

Wasif Afzal
Mälardalen University, Sweden

wasif.afzal@mdh.se

Daniel Sundmark
Mälardalen University, Sweden

daniel.sundmark@mdh.se

ABSTRACT
Background: Testing is one of the main methods for quality as-
surance in the development of embedded software, as well as in
software engineering in general. Consequently, test results (and
how they are reported and visualized) may substantially influence
business decisions in software-intensive organizations. Aims: This
case study examines the role of test results from automated nightly
software testing and the visualizations for decision making they
enable at an embedded systems company in Sweden. In particular,
we want to identify the use of the visualizations for supporting de-
cisions from three aspects: in daily work, at feature branch merge,
and at release time. Method: We conducted an embedded case
study with multiple units of analysis by conducting interviews,
questionnaires, using archival data and participant observations.
Results: Several visualizations and reports built on top of the test
results database are utilized in supporting daily work, merging a
feature branch to the master and at release time. Some important
visualizations are: lists of failing test cases, easy access to log files,
and heatmap trend plots. The industrial practitioners perceived
the visualizations and reporting as valuable, however they also
mentioned several areas of improvement such as better ways of
visualizing test coverage in a functional area as well as better navi-
gation between different views. Conclusions: We conclude that
visualizations of test results are a vital decision making tool for
a variety of roles and tasks in embedded software development,
however the visualizations need to be continuously improved to
keep their value for its stakeholders.

CCS CONCEPTS
• Software and its engineering→ Software creation andman-
agement; Software testing anddebugging;Empirical software
validation;

KEYWORDS
Software Testing, Visualizations, Decision Making

ACM Reference Format:
Per Erik Strandberg, Wasif Afzal, and Daniel Sundmark. 2018. Decision
Making and Visualizations Based on Test Results. InACM / IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM)
(ESEM ’18), October 11–12, 2018, Oulu, Finland. ACM, New York, NY, USA,
Article 4, 10 pages. https://doi.org/10.1145/3239235.3268921

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ESEM ’18, October 11–12, 2018, Oulu, Finland
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5823-1/18/10.
https://doi.org/10.1145/3239235.3268921

1 INTRODUCTION
Testing is a fundamental quality assurance activity in software de-
velopment. The results of testing are typically evaluated in different
ways to assess the quality of the software under test. Major unex-
pected outcomes of testing typically cause increased time and effort
to isolate, identify and describe the unexpected outcomes.

Test results analysis and supporting visualizations have slowly
gained importance, as the complexity of developing software has
increased. Furthermore the stakeholders now need reliable data
to base their critical decisions upon. Within the current trend of
continuous development [20], the goal of continuous testing is to
provide rapid feedback on the possible success of the latest build
or release candidate. Test results are typically recorded in some
form. A test results database (TRDB), with supporting analyses
and visualizations, may serve as one important success factor in
ensuring the provision of this rapid feedback. Some information
regarding test execution can also be entered in test logs that can
capture the timing of test execution and configuration used when
testing [13]. It is important to distinguish TRDBs from bug/issue
reporting and tracking databases such as BugZilla and Mantis BT.
This separation is especially interesting since most of the research
within software engineering has historically focused on data from
bug/issue reporting and tracking databases [27], while leaving the
potential of exploiting TRDB for decision making largely untapped.

The objective of this paper is to explore the use of test results
analysis & visualizations in the context of complex embedded sys-
tem development. We do this by conducting an industrial case study
at Westermo Research and Development AB (Westermo), which
designs and manufactures robust data communication products for
mission-critical systems. We specifically address how Westermo
utilizes the TRDB as an aid in decision making at several critical
points in the development of its industrial network operating sys-
tem, the Westermo Operating System (WeOS). These critical points
are the daily work, feature branch merge and release time.

The TRDB at Westermo has helped different stakeholders to
navigate through an increased complexity arising from a grow-
ing number of parallel code branches, an increasing number of
test cases and an increasing number of test systems with different
configurations. The role of the TRDB is further enhanced in time-
pressure situations; e.g., near release times, several visualizations
made possible by the TRDB increases confidence in the critical
decision for whether or not to release a particular WeOS version.

2 BACKGROUND AND RELATEDWORK
Recent international standards and the International Software Qual-
ifications Board (ISTQB) both highlight the importance of commu-
nication for testers. Annex E of the ISO/IEC/IEEE 29119-1 stan-
dard [14] acknowledges that testers need to communicate with

1

https://doi.org/10.1145/3239235.3268921
https://doi.org/10.1145/3239235.3268921


ESEM ’18, October 11–12, 2018, Oulu, Finland Per Erik Strandberg, Wasif Afzal, and Daniel Sundmark

various stakeholders in a timely manner and that this communi-
cation may be more formal or oral. ISTQB has released a syllabus
relevant for test automation engineers [3] that includes a chapter on
reporting and metrics where they recommend to visualize results,
create and store logs from both the system under test and the test
framework, and generate reports after test sessions.

Shahin et al. found that when continuous practices are adopted
at an organization the frequency of integrations increase, and there
is an exponential growth of information. They also found that
lack of awareness and transparency is a challenge [20]. Regression
test selection (covered in recent surveys [7, 12, 26]), is a common
approach to make good use of the available test environment, given
a time budget. Our previous work on system-level regression test
selection describes Westermo’s implementation [22, 24]. Just like
what Shahin et al. suggest, we believe that regression test selection
increases the burden of information overflow.

Metrics for the testing phases have been studied, e.g. in [1, 16].
Kan [16] argues that several basic testing metrics such as test
progress curve, defect arrival density, critical problems before prod-
uct ship, should be an integral part of all software testing. Kan is
further of the view that testing metrics lack industrial validation:
“ . . . few [testing metrics] are supported by sufficient experiences of
industry implementation to demonstrate their usefulness”.

Within the field of software engineering, visualizations have
been important for many decades. One survey on software visual-
ization present methods for visualizing static aspects with the focus
of source code lines, class metrics, relationships and architectural
metrics [6]. An important publication using test data combines
source code, code coverage, unit tests and test results in a sort of
extended Integrated Development Environment (IDE) view [15].
A dashboard is a common approach for quality monitoring and
control in the industry. These aim at presenting one or more key
performance indicator (KPI) over time [10].

Recent studies on visualizing test results show that: (i) there is
a need for summaries [17], (ii) information may be spread out in
several different systems [4], (iii) one might need to consider transi-
tions between different views of a test results visualization tool [18],
and that (iv) visualizations may target managers, experts, testers
and code maintainers, with the purpose of giving early warnings,
suggestions for code improvements, planning support and support
for making decisions [21]. Many of these studies also propose vi-
sualization methods. Some other examples of visualizations in the
testing context are given in [8, 9] to identify similarities across
test cases. In [18], the authors propose an interactive visualization
technique for analysis of results of large-scale software regression
testing. They propose multiple views for test results visualization,
e.g., comprising of charts and tables.

One pattern we observed in test visualization papers is the lack
of long term industrial validation. Related studies typically either
do a proposal for a visualization, or a one-time evaluation. This
paper is based on a test results database and visualizations that
have been implemented over a duration of six years.

3 INDUSTRIAL CASE STUDY DESIGN
The objective of the case study is to explore the use of the TRDB
and the visualizations it supports for the three critical decision

points of: daily work, merging a code branch to the master branch,
and at release time. The objective is refined into the following set
of research questions:
RQ1: How are visualizations used for making decisions in daily

work, at merging a code branch to a master branch and at
release time?

RQ2: How do industrial practitioners perceive the value of visual-
izations, both in general and with respect to decision making
in daily work, at merging a code branch to a master branch
and at release time?

3.1 Case, Subject Selection & Industrial Context
Based on our stated case study objective and the RQs, the purpose
is both exploratory and descriptive (finding out what is happen-
ing, describing the current situation, and generating improvement
ideas). The case in our context is the test results visualization imple-
mentation supported by the TRDB at Westermo. We do not restrict
ourselves with a particular project or a software release as the visu-
alizations are available as a support across all projects and releases.
However, the units of analysis in our case are the different roles
we interviewed and sent questionnaire to. These roles are a project
manager, a test manager, two developers and one test environment
developer. Thus one can think of this case study as an embedded
case study with multiple units of analysis [19].

Westermo provides robust and reliable data communication net-
work devices (such as Ethernet switches, modems and routers) to
clients ranging from transport, water and energy supplies to pro-
cess industries, such as mining and petrochemical. Their products
and services are for mission-critical systems operating in physi-
cally demanding environments where network outages can have
dire consequences. On the software front, they build the indus-
trial operating system WeOS that powers its products and helps in
configuration and maintenance.

The test results are gathered from the nightly system-level re-
gression testing of WeOS running on one or more devices under
test (DUTs) in a real network setting. These test results are stored
in a database for generating different visualizations. The following
Sections provide more information on the development and testing
process as well as the TRDB in use at Westermo.

3.1.1 Embedded Software Development and Testing Processes.
At Westermo, the software development is an agile feature driven
process based on Kanban. Features are developed in isolation from
each other where each feature development constitutes a feature
branch. Each feature branch goes through different phases of de-
velopment. Once all phases are done, it becomes a candidate to be
merged in the integration (or the master) branch (Figure 1). The
system-level regression testing of WeOS is done nightly when no
one is doing any software changes. This regression testing is an
important part of Westermo’s continuous integration framework.
To provide an environment for both manual and automated test ex-
ecution and reporting, Westermo has implemented and maintained
a test framework over a period of several years. The test framework
allows for test results recording in an automated fashion. To run the
system-level nightly regression testing, a number of test systems
are built as part of the test environment. These test systems are built
as different network topologies, which in turn correspond to the

2



Decision Making and Visualizations Based on Test Results ESEM ’18, October 11–12, 2018, Oulu, Finland

Figure 1: Feature driven development atWestermo. After Re-
lease N three features were started: X, Y and Z. For Release
N+1 only X and Zwere included (merged), and feature Y will
be kept in its own feature branch until it is ready for release.

Figure 2: An example test system at Westermo.

different scenarios that these DUTs will be part of in a real network
setting in an actual field operation. Figure 2 shows an example of
one such test system having some WeOS devices, a PC server and
a few other devices of other types.

The development of these dedicated physical test systems is one
major aspect differentiating embedded software development from
traditional software engineering.

The DUTs in the test system communicate via different protocols
and through different ports using cables such as Ethernet and optical
fibre. Each DUT runs one of several customized versions of WeOS.
WeOS is composed of several software libraries that include several
source code files.

The nightly testing uses the latest WeOS images; any changes
to WeOS are pushed to the source code repository prior to the
start of nightly testing during the day time. The test suites are
built and prioritized using Westermo’s internally developed test
prioritization tool SuiteBuilder [22, 24]. The test cases in each test
suite are mapped to different test system network topologies [23]
and then executed one by one. The verdict of each test execution is
reported to the TRDB.

3.1.2 Test Results Database. Westermo’s test framework runs
on average about 3500 to 4000 tests on more than a dozen test
systems on many versions of WeOS every night. In Figure 3 this is
illustrated in terms of number of test systems, test cases, and code
branches in use, as well as number of outcomes, all broken down per
quarter. When the TRDB was first implemented in 2012, the nightly

0

5

10

15

20

Te
st

Sy
st

em
s

0

100

200

300

400

500

Te
st

C
as

es

0

5

10

15

20

25

30

B
ra

nc
he

s

20
12

-Q
2

20
12

-Q
3

20
12

-Q
4

20
13

-Q
1

20
13

-Q
2

20
13

-Q
3

20
13

-Q
4

20
14

-Q
1

20
14

-Q
2

20
14

-Q
3

20
14

-Q
4

20
15

-Q
1

20
15

-Q
2

20
15

-Q
3

20
15

-Q
4

20
16

-Q
1

20
16

-Q
2

20
16

-Q
3

20
16

-Q
4

20
17

-Q
1

20
17

-Q
2

20
17

-Q
3

20
17

-Q
4

Quarter

0

100

200

300

400

O
ut

co
m

es
(t

ho
us

an
ds

)

Figure 3: Test results data complexity: number of test sys-
tems, test cases, code branches, and test outcomes per quar-
ter.

testing was conducted using 5 test systems, on 2 code branches
with 203 test cases, or roughly 2.000 theoretical combinations. In
Q4 of 2017, there were 17 test systems in use, 24 code branches, and
544 active test cases or roughly 220.000 theoretical combinations
thereof. From Figure 3 one can make three important observations:
(i) The number of test systems and test cases roughly grows linearly
over time. (ii) The number of code branches was stable at two until
2016 when the feature driven development process was introduced,
and since then the number of branches in use each quarter roughly
grows linearly. (iii) The number of outcomes (verdicts from started
test cases) grew linearly until end of 2013, and had a dip in 2014.
At this time nightly testing did not finish in time, and test selection
was introduced [22, 24]. Then the number of verdicts grew until
2017 with an increased number of test systems, and in 2017 the
number of test systems plateaued.

The test results statistics are stored for each test case execution
(outcome) in terms of passed, failed, invalid, unmappable, unload-
able or skipped tests. ‘Invalid’ tests are those tests that failed because
of an unhandled exception or a possible shortcoming in the test
framework or the test environment. ‘Unmappable’ means that phys-
ical resources were not available to run some tests. ‘Unloadable’
tests are those that went missing for some reason or had syntax
errors in the Python code. ‘Skipped’ tests were low-priority test
cases towards the end of the suite that could have been executed if
more time had been available.

The results generated are non-trivial to understand, owing to
this multi-dimensional complexity seen already in 2012. There was
a need for a multi-purpose relational data base such that one could
query relevant information, depending upon one’s role in the com-
pany, i.e., a developer’s information needs are different than that of
a test lead or a manager. Westermo’s TRDB provided the foundation

3



ESEM ’18, October 11–12, 2018, Oulu, Finland Per Erik Strandberg, Wasif Afzal, and Daniel Sundmark

to meet such stakeholder’s needs. The current TRDB thus aims at:
storing results from all nightly testing; storing enough information
to recreate the state used on the DUTs and test servers when the
test ran; allowing different views on the data, e.g., statistics on
suite level, statistics per test, statistics per DUT-type, statistics per
release; as well as generating condensed test reports.

There are a number of tables in the database that serve different
purposes, such as storing information about the nightly sessions,
tests and outcomes. This schema enables answering a number of
fundamental questions about the nightly regression testing, such
as: what was the outcome of running a particular test? and what
were the states of the DUTs when a certain test case was executed?

3.1.3 Implementation of Tools. Different kinds of reports are
available from the TRDB such as summary and detailed reports on
nightly testing (e.g., finished tests/suites and duration per test/suite),
test logs showing how a test has performed in the last 60 days. In
addition to the reports, there are several plots generated (details
on them are given in Section 4.1). The reports and the various
visualizations based on TRDB are a result of three implemented
tools: (i) PaperBoy is the initial tool that generates plain text sum-
maries and basic trend plots. (ii) TestAdm is the most used tool,
it introduced clickability and the possibility to see and filter log
files in a browser. (iii) PaperBot is a set of command-line based
tools that were first implemented to be an IRC chatbot, but that
now only supports the command line. The code base in PaperBoy
also generates heatmaps of test results. PaperBoy and PaperBot are
both implemented in Python. TestAdm is implemented mostly in
JavaScript on top of AngularJS, with some components in Python.
All three tools communicate with the TRBD using hand-written
SQL-queries embedded in the source code.

3.2 Data Collection
In order to approach the research questions from different angles
and to ensure completeness of data collection, we used method-
ological triangulation by using multiple data collection techniques:
interviews, questionnaires (as follow-up to interviews), archival
data and participant observations. An overview is shown in Figure 4
and details explained below.

Interviews: We conducted a total of 5 semi-structured interviews
with one project manager, one test manager, two developers and
one test environment developer. We selected these persons based
on convenience sampling as the industrial co-author of this paper,
in consultation with the test manager, knew the most knowledge-
able persons to interview in the company. We planned a series of
questions before the interview but did not necessarily ask them
in the exact order every time, but made sure that every question
was asked. We started each interview with background questions
about the interviewee, before asking specific questions related to
our research objective. Two authors participated in each of the 5
interviews and also took personal notes. The interviewees had ac-
cess to the test results visualization web page while they answered
questions, and we encouraged them to use it during the interview,
such that references to particular pages and figures can be easily
made. The interview questions are given in Appendix A.

Questionnaires: We followed the interviews with a web-based
questionnaire to the 5 interviewees. The questionnaire was kept
small and included questions on their degree of satisfaction with
existing visualization support for making decisions in their daily
work, at branch merge and at release time. Specific questions were
asked about ease of understandability of visualizations, ease of
learning the meaning, time taken to visualize and ease of navigation.
Each question had an optional space for including any free-text
comments. The used questionnaire is given in Appendix B.

The questionnaires were given to the same persons we inter-
viewed to serve two purposes: (i) to complete and complement
the information given in interviews (ii) to be able to elicit useful-
ness of test visualizations, their ease of navigation, learnability,
understandability and response times.

Archival Data: We had access to internal documentation as well
as source code repositories from past and present projects. Docu-
ments such as formal process definitions and more informal inter-
nal wiki pages were also available. The archival information was
mainly used to get familiar with Westermo’s development process,
the meaning of various internal classifications of test results as well
as getting an overview of the database schema, associated script
documentation and generated visualizations. This was essential to
confirm, understand and add to the data collected from interviews
and questionnaires and also helped us answer RQ1.

Participant Observations. Twice a week at Westermo a team of
people with different roles gather around a large screen in a confer-
ence room for a sync meeting where test results are investigated by
using the TRDB and the visualizations. The results are discussed
and tasks of various kind, typically fault finding, are distributed.
This is an important ritual for sharing knowledge like “Test system
X is new and the devices in the system are early prototypes.” We par-
ticipated in two sync meetings and made high-level notes on how
the visualizations were used and the shortcomings encountered.

3.3 Ethical Considerations
Several steps were taken to ensure that our data collection remains
within known ethical guidelines. Co-authors from academia had
signed an NDA prior to getting access to archival data. We in-
formed the participants with the purpose of the interviews and
questionnaires, both through email and at the start of each inter-
view/questionnaire. Before recording an interview’s audio, per-
mission was taken from the interviewee. It was made clear to the
interviewees that the audio files would not be uploaded on any
server and only stored on local machines of the researchers. It was
also conveyed to the interviewees that the audio files and tran-
scripts would only be used to answer our research objectives in an
anonymous and confidential manner.

3.4 Data Analysis
The interview data was transcribed and analyzed with thematic
analysis [5]. We also familiarized ourselves with the interviews by
listening to the audio files and reading the transcripts repeatedly.
During the five interviews, we recorded 3.95 hours of audio that
we transcribed into 19 dense A4 pages. During the transcription,
names of products, people and tools were anonymized in case the

4



Decision Making and Visualizations Based on Test Results ESEM ’18, October 11–12, 2018, Oulu, Finland

A
ca

de
m

ia
In

du
st

ry

Practitioners

Transcripts Thematic Analysis

User Stories

Views

Test Manager

Sync Meetings

InterviewsResearchers

User Stories

Questionnaires

Archival Data

Figure 4: An overview of methodological triangulation used for the data collection.

transcript would be forgotten in a printer, etc. We identified 17
themes, and categorized interview snippets related to a theme as
positive, neutral, or negative. For example, in one of the interviews
the interviewee said “[Looking at log files] is very valuable, the part
where you can see the <device communication> log. I’d like to have
the functionality to see the kernel log, and those kinds of things. But
there is a penalty to collect these.” This was clearly a discussion on
the theme logs, that was both positive (it is good to have easy access
to logs) and negative (there could be more logs stored).

The participant observations at sync meetings were summarized
on a higher level than the interview transcripts, and were catego-
rized in the same way as interview snippets. For example, during
one sync meeting we noticed that the participants did an in-browser
zoom of the web page and reacted when the font appeared to be
broken. This was noted as “poor font zoomability” and categorized
as negative under the theme of UI.

The data from the questionnaires were on a Likert scale, which
was used to show respondents perception of the usefulness, ease of
navigation, learnability, understandability and time consumption
of visualizations. The archival data available through, e.g., the doc-
umentation on internal wiki pages, was used to explain the existing
visualization support and was primarily used by the authors to both
get familiarized with context and to understand the meaning of
interview/questionnaire data.

3.5 Validity Analysis
The first author of this study has been part of the test team at
Westermo for many years. Furthermore, the second author has
regularly been located at the company for more than a year, and
the final author regularly visits it. There has thus been a prolonged
involvement, and the researchers of this study understand the vo-
cabulary and viewpoints of the interviewees. However, all research
has shortcomings, here we discuss some threats to validity based
on the viewpoints proposed by [19].

We primarily investigated the constructs decision making, role
and visualization and the relationship between these. Threats to
the construct validity include the limits of scope: decision making
was limited to three key points in the development process; we
limited ourselves to interview five individuals with the four roles of
developer, tester, project manager and test manager; and we limited

the visualizations to already existing visualizations. However, we
opted for interviewing key individuals belonging to different groups,
and used the knowledge of the industrial co-author and the test
manager as a criterion for interviewee selection.

The study was conducted at Westermo, an embedded systems
company in Sweden, doing agile software development, with a
strong focus on test automation, using an internally developed test
results database. Results on the available visualizations atWestermo
are of course not generalizable, but we provide many generaliz-
able observations on how an individual having a role can use a
visualization of test results in order to enhance decision making.

In order to improve validity of the results we collected data from
several sources with different techniques (method triangulation)
and none of the interviews were conducted by only one researcher
(observer triangulation). Further, by describing the case and provid-
ing both the interview questions and the questionnaire, we have
simplified the possibility for a replication study.

4 RESULTS
This section presents the results of the study as well as answers the
stated research questions.

4.1 RQ1: Visualizations for Decision Making
This section presents how the TRDB and the visualizations are
helping Westermo in three dimensions of daily work, at branch
merge time and at release time.

4.1.1 Support in Daily Work. For the developers and the testing
team at Westermo, the visualizations built on top of the TRDB are a
tool to identify problematic areas and to identify the root causes of
failed test executions. The visualizations help achieve this in a step-
wise way, moving from giving a general picture for all branches to
log files for a particular test outcome (Figure 5).

The very first visualization that a user can see is an overview
of the WeOS branches that ran nightly testing, illustrated in Fig-
ure 6. These test results are presented in a summary/overview form
using a circular progress graphic. Different colors in the circular
progress graphic depict progress of different test results, e.g., green
shows passing of tests, red shows failure while orange indicates
that some tests remained invalid, unmappable or unloadable. A
small color-filled inner circle shows the overall state of nightly

5



ESEM ’18, October 11–12, 2018, Oulu, Finland Per Erik Strandberg, Wasif Afzal, and Daniel Sundmark

Figure 5: Hierarchical visualizations helping daily decision
making based on the TRDB at Westermo.

Branch 2 Branch 3 Branch 4 Branch 5Branch 1

Figure 6: Overview: Each circular graphic represents aWeOS
development branch.

testing as having completely passed or not, depending upon the
outer, circular progress graphic.

The user has the possibility to go deeper into the test results
for a particular development branch through an available menu
where the different branch names are populated. Once the user
clicks on the development branch of interest, the Filtered WeOS
Branch View shows up (Figure 7). The default filter shows only
failing tests for the last night. Filtered WeOS Branch View presents
a more detailed visualization of test results for a particular branch
on different test systems. Here different filters are implemented to
help the development and the test teams. Under the current view,
a developer or a tester can filter, for example, on number of days
and type of test execution outcome (passing, failing, invalid, etc.).
The ability to focus on a particular WeOS branch, as shown in
Figure 7, is important for the development team. This allows both
the developers and the testers to narrow down their work specific
to a certain branch, out of the many parallel WeOS branches.

If a particular test outcome is shown to fail on a particular test
system, the user is able to click on it to get further details. Clicking
takes the user to the ‘Log View’ where one can read the test log
messages to reach the root cause of a certain test execution result.
One example of the log view is shown in Figure 8.

In addition to the web-based test results exploration, a summary
report of each test suite of the nightly regression testing is compiled
into a PDF and stored in a shared location at Westermo each work-
ing day. This report is occasionally used internally, and sometimes
used in communication with customers.

4.1.2 Support at Branch Merging. Merging a feature branch in
the master branch is a critical decision to make. In order to be
ready for the merge, all automated nightly tests on the feature
branch should be passing. Moreover, the feature branch is consid-
ered stable when a number of nightly tests are found to be passing
consecutively for a number of days. One of the most important

Figure 7: Screenshot from a filteredWeOS Branch View: Test
results for different test systems with test statistics. (Sensi-
tive information has been blurred for confidentiality.)

03:25:34,985 Test Environment: Loading topology
03:25:36,387 Test Environment: Reset of devices OK.
03:25:38,110 Test Environment: Mapping complete.
03:25:38,322 Test Case: Speed test of ports 1, 4 and 8.
03:25:40,532 Test Case: Bad speed at port 4. Fail!
03:25:40,672 Test Case: Cleaning up.
03:25:42,137 Database: Writing results.

Figure 8: Log View: An example test log.

visualizations for assisting decision making in merging a feature
branch is the trend plot of a certain feature area on all the test
systems. In Figure 9, two example trend plots are presented.

Another visualization supported by the TRDB that provides
important information regarding the health of a feature branch is
the heatmap of a particular test case over various test systems in
the past few weeks. Three examples of such heatmaps are given in
Figure 10: the first one shows the introduction of a new test case,
then one that shows a test case that fails on multiple test systems,
and last a test case with intermittent invalid results – a “flaky” test.

4.1.3 Support at Release Time. A set of features, when stable
and merged in the master branch, allows for a WeOS release to be
made. From a test perspective, all the features going into the release
should be performing correctly and have been integrated success-
fully. Furthermore, testing at the release phase is done according
to a risk analysis. For all the features included in the release scope,
the risks identified for all integrated features from previous test
phases need to be evaluated from a release perspective. The TRDB
and the supporting visualizations help achieve this evaluation.

There is a set of command line scripts that a test manager runs on
the TRDB to query long-term statistics. Two of the most important
queries are the ‘trend’ and ‘matrix’ scripts, which both present
results from all or a few features, and on all or selected test systems,

6



Decision Making and Visualizations Based on Test Results ESEM ’18, October 11–12, 2018, Oulu, Finland

Figure 9: Trend plots for two different functional areas helping to decide its merging or not with the master branch. Area X
has some invalid results, whereas Area Y only has passing (and skipped) test cases.

14 16 18 20 22 24 26 28 30

Test System 1
Test System 2
Test System 3
Test System 4
Test System 5
Test System 6
Test System 7
Test System 8
Test System 9

Pass Fail Inv./Unm./Unl. Skip

(a) The introduction of a new test case.

09 16 23 30 06 13

Test System 1

Test System 2

Test System 3

Test System 4

Test System 5

Test System 6

Pass Fail Inv./Unm./Unl. Skip

(b) A test case infrequently being tested in nightly (many gray squares),
that then fails on all test systems for several nights. After some modi-
fications it is corrected on all test systems except Test System 3 where
it continues to fail.

04 07 10 13 16 19 22 25 28

Test System 1

Test System 2

Test System 3

Test System 4

Test System 5

Test System 6

Test System 7
Pass Fail Inv./Unm./Unl. Skip

(c) A test case with intermittent problems on Test System 6.

Figure 10: Heatmaps illustrating three failing patterns. All
figures have test system on the Y axis and time on the X axis.

on the release branch in the last few days. Examples with output is
shown in Figures 11 and 12. The test manager can look at the results
in different dimensions, such as how did a certain feature perform
on testing for last few days. Similarly, the state of test systems can
be assessed, which is important if new hardware was introduced.

$ trend -b branch -a area -d 10

Date Pass Fail Inv. Unm. Unl. Skip
201X-0Y-01 84 0 0 0 0 77
201X-0Y-02 125 0 0 0 0 36
201X-0Y-03 161 0 0 0 0 0
201X-0Y-04 137 0 0 0 0 24
201X-0Y-05 155 0 0 0 0 6
201X-0Y-06 143 9 1 0 0 8
201X-0Y-07 106 0 0 0 0 55
201X-0Y-08 63 0 0 0 0 98
201X-0Y-09 59 0 0 0 0 102
201X-0Y-10 29 0 0 0 0 132

Figure 11: Output of the trend script. The optional argument
-a has filtered the results given a specific functional area.

$ matrix -b branch -d 7 -s system1 -s system2 -s system3
-a area1 -a area2 -a area3

Area\Sys. system1 system2 system3 total
area1 80 of 80 130 of 130 23 of 23 233 of 233
area2 0 of 0 7 of 7 0 of 0 7 of 7
area3 18 of 18 42 of 42 17 of 18 77 of 78
total 98 of 98 179 of 179 40 of 41 317 of 318

Figure 12: Output of the matrix script. The argument -b se-
lects the branch, -s selects test systems, -a selects functional
areas, and -d selects number of days to investigate.

The matrix statistics show the number of tests passing for a certain
combination. “17 of 18” for area3 on system3 means that one test
failed in this branch, during these days, on this test system for this
feature.

If there is a significant decrease from 100% in a row, it could
mean that this feature is not mature. But if there is a significant
decrease from 100% in a column, it could mean that this test system
is either faulty or not configured properly. If there are failures all
over the place in the matrix, then this is an indication that this is
not a good release candidate at the moment. If there is a “0 of 0”, it
could mean that this combination should either be tested more, or
that this system does not support testing of this feature.

Other scripts and visualizations on the TRDB are available to
the test manager at the release time, such as what failed in the last
few nights, how did an area of interest perform in nightly testing in
past few days, the already mentioned heatmap plot, among others.

7



ESEM ’18, October 11–12, 2018, Oulu, Finland Per Erik Strandberg, Wasif Afzal, and Daniel Sundmark

U
I

F
ilt

er
in

g

C
ov

er
ag

e

A
re

a

L
og

s

Sy
st

em
s

To
ol

s

M
is

c

P
lo

ts

H
ea

tm
ap

B
ra

nc
he

s

T
re

nd
s

H
ar

dw
ar

e

M
er

ge

O
ve

rv
ie

w

L
is

t
of

ou
tc

om
es

O
th

er

Theme

−30

−20

−10

0

10

F
re

qu
en

cy

Positive Negative

Figure 13: Themes frequently discussed in interviews.

4.2 RQ2: Perceived Value of Visualizations
All the roles we interviewed utilized the visualizations with varying
degree of intensity. There was an unanimous agreement on the
utility and usefulness of visualizations, although each one of them
also expressed several areas of improvement. In this section, we
beginwith a discussion of themes frequently discussed in interviews
(8 out of 17) and categorize them as being positively or negatively
perceived by the interviewees. Later we analyze the value of the
visualizations as told by the interviewees at the three decision points
of daily work, feature branch merge and release time. Lastly, we
summarize the data from the questionnaires as a frequency bar chart
to show respondents perception of the usefulness of visualization
as a support for decision making, its easy of navigation, learnability,
understandability and timing.

4.2.1 Positive & Negative Themes. In Figure 13, we summarize
the aggregated themes identified in the interview data with their
positive and negative ranking (neutral removed). Below we sum-
marize the most important findings of the most important themes.

User Interface: The most discussed theme was on the User In-
terface, UI. During the interviews the interviewees had problems
navigating and also expressed frustrations on the inability to use the
browser back button and poor clickability (in terms of understand-
ing what elements are links and not being able to click interesting
pieces of plots), poor positioning of filter elements (making it easier
to change the URL than clicking a button), and poor fonts when
zooming (for example when looking at the tool on a big screen
during a sync meeting).

Filters: Filtering is important, and the default filter (hiding pass-
ing tests) was perceived as good. There were however a strong
desire for being able to filter in ways not supported, such as remov-
ing results from new (and experimental/unstable) test systems, or
seeing only results from a certain hardware product type.

Coverage: There are several important challenges in under-
standing coverage: (i) test cases are selected dynamically with Suite-
Builder so not all test cases are executed every night, (ii) some test
cases are not relevant for all test systems nor for all code branches,
(iii) focus is mostly given to failing tests, and (iv) test cases that
trigger known issues are not run in the regular nightly suite, instead

they go in a separate suite for the known issues. Not knowing if a
test is executed, filtered away or not in scope for a test system or
branch, was an uncertainty several interviewees mentioned.

Area: All functional areas in WeOS has at least one developer
dedicated as responsible for it. Interviewees requested better sup-
port by the tool for these individuals. In particular: a good way to
see coverage of the test cases in the area.

Logs: The tool can show log files that are timestamped so that
sequences and other details can be explored. For the interviewees
the ability to investigate log files was one of the most important
features. However, the log files have different formats, and only one
log file is easily seen at a time. Some log files could be filtered with
respect to severity of the logged message, but there is no possibility
to filter based on time, such as only showing what happened in a
time range of five seconds before an error occurred.

Systems: Very few details on the test systems were shown in the
tool at the time of the interviews. There is a desire to understand
what hardware there is in a test system, how cables are connected,
and if the system has been modified recently. During this study
the tool was updated to also include lists of models of the DUTs
of the test systems, and also a visualization of the overall network
topology of each test system.

Heatmaps: One of the themes with the most positive remarks
was heatmaps, illustrated in Figures 10. These plots also received
critique for being messy and one interviewee asked “What do the
gray boxes mean?”.

List of Outcomes: The only theme that received no negative
opinions was having a list of outcomes with links to the log view
of each test execution, failing or not. This is one of the most, if not
the most, important feature of the tool and one interviewee said “It
helps us go through the results”.

4.2.2 Value in Daily Work, at Branch Merge and at Release Time.
In daily work in the morning, one WeOS developer said that visu-
alizing the results of nightly testing is the first thing he does, to
get an estimate of the quality of the feature branch under devel-
opment. On a daily basis, this WeOS developer was of the view
that the ability to see the log of a failed test execution is valuable.
The test environment developer, on the other hand, mentioned that
the first thing he does in the morning is to assess the health of
various test systems after nightly testing and to see if there are
some test results missing from one or more test systems. He does
this for a particular branch of interest. Failing tests are also of in-
terest where he mentioned finding out if a test is failing on several
test systems to indicate a possible problem in the test script itself.
The second WeOS developer we interviewed said that he starts the
daily work by checking the nightly testing results on a particu-
lar feature branch of interest. If some tests are found to be failing
on the branch, a more detailed investigation starts, otherwise the
passing test results are not looked into further. The detailed inves-
tigation concerns the areas he is responsible for. Some failing tests
are known from before, so they are ignored while new failures are
looked into before the daily morning stand-up meeting.

When it is time to decide on merging a feature branch to the
master branch, the WeOS developer said that the test results visu-
alizations are mostly valuable at this stage as a certain degree of

8



Decision Making and Visualizations Based on Test Results ESEM ’18, October 11–12, 2018, Oulu, Finland

Navigation Fast Understand Make
decisions

Learn

Question

−3

−2

−1

0

1

2

3

F
re

qu
en

cy

Easy Hard

Figure 14: Answer frequencies to questions.

stability in the feature branch (shown by passing test results) is ex-
pected before its merge with the master branch. The second WeOS
developer mentioned that close to the merge decision for a feature
branch, a risk workshop is done where test results on several areas
are seen and analyzed. The project manager emphasized that test
results is a primary indicator of stability of a feature branch, so
at merge time, he first checks if the test results on a certain test
system are failing. Then sorting is done at the test case level to see
if a particular test is failing on one or more test systems. Then the
different areas are selected to analyze test results within them.

Close to release time, the test manager hinted at the criticality
of viewing test results. She mentioned searching and evaluating
test results several nights back to see trends. Test cases that fail
constantly or intermittently receive troubleshooting to expose the
cause of the failures. Test results of important functional areas
are also looked at carefully to evaluate risks associated with the
release. The project manager mentioned that for the release can-
didate, all the test results are reviewed and it is made sure that
different required test systems have been running the test cases
successfully. Functional areas are made sure to have undergone
successful testing.

4.2.3 Answers inQuestionnaires. All five interviewees answered
all five questions in the questionnaire. None of the interviewees
used the “Very hard” or “Very easy” option in any question. In
Figure 14, we have plotted the “Easy” and “Hard” answer frequen-
cies. Three aspects had symmetric answer frequencies (as many
“Easy” as “Hard”): Fast,Make decisions and Learn. Navigation had no
positive answer and three negative, whereas Understand had two
positive and one negative answer. The analysis from the question-
naires helped reinforce some of our findings from the interviews,
e.g., the findings from the theme of User Interface from the inter-
views and Navigation aspect from questionnaires show that users
need improvements in this aspect.

5 DISCUSSION
In his keynote at a practitioner-oriented conference, James Bach
highlighted that stakeholders do not know what to visualize: “What
I had to do, is use my skill as a tester, and my interest in visual
design, and complexity, and displays, and statistics, to try to come
up with something, that they, when they saw it – it would be like

someone seeing an iphone for the first time . . . ” [2]. This, anec-
dotally, suggests that visualizations are not prioritized and that
individuals skilled in other domains are the ones that end up being
the ones preparing visualizations.

The results in this paper have shown how visualizations and
reporting based on the test results database are utilized in a complex
development environment arising from a number of code branches,
different hardware and different network topologies. This study
captures three instances where a test results database and the sup-
porting visualizations are being successfully exploited in a real
industrial context: during daily work, before deciding to merge
a feature branch to the master branch and at release time. Dur-
ing daily work, the results of the nightly regression testing can
be analyzed through different views, moving from an overview of
testing results on each development branch to the specific view of
execution log for a test case. Trend plots and heatmaps for a feature
branch show evidence in support of or otherwise regarding the
decision to merge it to the master branch. At release time, test result
trends, and a consolidated matrix view of the test execution results
on various test systems across different features for a number of
days helps the test manager in the decision to release or not.

In a recent literature review on recommendation systems for
software engineering [11], the authors highlighted the gap that
exists on the lack of decision support systems for software testing.
Similarly, based on our limited search to find relevant papers on
visualization and decision support for software testing, many papers
were found to be still at a stage of proposing and/or developing a
theory. This is a little surprising since visualization and decision
support techniques have been around for a while. In fact, there is
more progress in using such techniques for program and source
code comprehension (see e.g., [25]); it is only timely that the testing
phase catches up.

The development team, being the user of visualizations and
test results, need to be continuously asked about their needs and
value-adding features. One interesting outcome of this study is
eliciting such needs from the team. Thus as a result of this study,
Westermo has generated a list of user stories to implement for the
improvement of decision-making and visualization support based
on test results. The user stories have been generated based on the
summary of transcript snippets. For example:

• Transcript: “I don’t change the filters to start with [...] ”
• Summary: “Filters: defaults are good to start with”
• User Story: “In my daily work; I want sensible default filters
in all views; so I won’t have to start by re-filtering.”

We generated both functional user stories (as the one mentioned
above) and also non-functional user stories like: “In the future,
when we have much more testing, the tool must still be able to
work without scalability problems.” A total of 142 user stories were
generated and also prioritized by the test manager at Westermo
for determination of relevance. At the end, it was clear that the
visualizations and test results analysis has to be a continuous im-
provement activity.

6 CONCLUSION
The test results and corresponding visualizations have the potential
to help decision making across different stages in embedded system

9



ESEM ’18, October 11–12, 2018, Oulu, Finland Per Erik Strandberg, Wasif Afzal, and Daniel Sundmark

development. The existing research work on exploiting test results
and visualizations lack a long-term industrial validation and shar-
ing of real-world experience. We have conducted an industrial case
study in this paper on the topic of test results and their visualiza-
tions where Westermo have utilized them over a period of six years.
In particular, we have shown how test results and visualizations
are utilized during daily work, before deciding to merge a feature
branch to the master branch and at release time. We have also
shown how such analyses is perceived by industrial professionals
having different roles. Based on our analysis, the overall perceived
advantages of visualizations and reporting were confirmed by the
industrial participants. Furthermore, several requirements to fur-
ther improve the visualization experience were elicited. Finally, our
results show how a variety of visualizations as well as reporting
mechanisms based on the TRDB can serve as decision-support tools,
especially in a complex development environment having a number
of code branches, different hardware and network topologies.

ACKNOWLEDGMENTS
This work was supported by Westermo Research and Development
AB, the Swedish Knowledge Foundation (grants 20130085, 20130258,
20150277 and 20160139) and the Swedish Research Council (grant
621-2014-4925). In particular we would like to thank interviewees
and visualization co-developers at Westermo.

REFERENCES
[1] W. Afzal and R. Torkar. 2008. Incorporating Metrics in an Organizational Test

Strategy. In IEEE International Conference on Software Testing Verification and
Validation Workshop.

[2] James Bach. 2018. Beauty or Bugs: Using the Blink Oracle in Testing. https:
//www.youtube.com/watch?v=5W_VLzNhT-s Keynote at the Beauty in Code
Conference, Malmö, Sweden 2018.

[3] Bryan Bakker, Graham Bath, Armin Born, Mark Fewster, Jani Haukinen, Judy
McKay, Andrew Pollner, Raluca Popescu, and Ina Schieferdecker. 2016. Certified
Tester Advanced Level Syllabus Test Automation Engineer. Technical Report.
International Software Testing Qualifications Board (ISTQB).

[4] Martin Brandtner, Emanuel Giger, and Harald Gall. 2014. Supporting continuous
integration bymashing-up software quality information. In Software Maintenance,
Reengineering and Reverse Engineering (CSMR-WCRE), 2014 Software Evolution
Week-IEEE Conference on. IEEE, 184–193.

[5] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative research in psychology 3, 2 (2006), 77–101.

[6] Pierre Caserta and Olivier Zendra. 2011. Visualization of the static aspects of
software: A survey. IEEE tran. on visual. and comp. graphics 17, 7 (2011), 913–933.

[7] Cagatay Catal and Deepti Mishra. 2013. Test case prioritization: a systematic
mapping study. Software Quality Journal 21, 3 (2013), 445–478.

[8] Emelie Engström and Per Runeson. 2013. Test Overlay in an Emerging Software
Product Line - An Industrial Case Study. Inf. Softw. Technol. 55, 3 (2013), 581–594.

[9] Daniel Flemström, Wasif Afzal, and Daniel Sundmark. 2016. Exploring Test
Overlap in System Integration: An Industrial Case Study. In 42nd Euromicro
Conference series on Software Engineering and Advanced Applications.

[10] Maria-Elena Froese and Melanie Tory. 2016. Lessons Learned from Designing
Visualization Dashboards. IEEE comp. graphics and apps. 36, 2 (2016), 83–89.

[11] Marko Gasparic and Andrea Janes. 2016. What recommendation systems for
software engineering recommend: A systematic literature review. Journal of
Systems and Software 113 (2016), 101 – 113.

[12] Dan Hao, Lu Zhang, and Hong Mei. 2016. Test-case prioritization: achievements
and challenges. Frontiers of Computer Science 10, 5 (2016), 769–777.

[13] IEEE Computer Society. 2014. Guide to the Software Engineering Body of Knowl-
edge (SWEBOK) V3.0.

[14] ISO/IEC/IEEE. 2013. Software and systems engineering – Software testing – Part
1: Concepts and definitions. ISO/IEC/IEEE Standard 29119-1:2013. International
Organization for Standardization, International Electrotechnical Commission,
Institute of Electrical and Electronics Engineers.

[15] James A Jones, Mary Jean Harrold, and John Stasko. 2002. Visualization of test
information to assist fault localization. In Proceedings of the 24th international
conference on Software engineering. ACM, 467–477.

[16] Stephen H. Kan. 2002. Metrics and Models in Software Quality Engineering (2nd
ed.). Addison-Wesley Longman Publishing Co., Inc.

[17] Agneta Nilsson, Jan Bosch, and Christian Berger. 2014. Visualizing testing activi-
ties to support continuous integration: A multiple case study. In International
Conference on Agile Software Development. Springer, 171–186.

[18] Rudolfs Opmanis, Paulis Kikusts, and Martins Opmanis. 2016. Visualization of
Large-Scale Application Testing Results. Baltic J. of Mod. Comp. 4, 1 (2016), 34.

[19] Per Runeson and Martin Höst. 2009. Guidelines for conducting and reporting
case study research in software engineering. Empirical SE 14, 2 (2009), 131–164.

[20] Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. 2017. Continuous
Integration, Delivery and Deployment: A Systematic Review on Approaches,
Tools, Challenges and Practices. IEEE Access 5 (2017), 3909–3943.

[21] Per Erik Strandberg. 2017. Software Test Data Visualization with Heatmaps.
Technical Report.

[22] Per Erik Strandberg, Wasif Afzal, Thomas Ostrand, Elaine Weyuker, and Daniel
Sundmark. 2017. Automated System Level Regression Test Prioritization in a
Nutshell. IEEE Software 2017 34, 1 (April 2017), 1–10.

[23] Per Erik Strandberg, Thomas J Ostrand, Elaine J Weyuker, Daniel Sundmark,
and Wasif Afzal. 2018. Automated Test Mapping and Coverage for Network
Topologies. In Software Testing and Analysis (ISSTA), 2018 ACM SIGSOFT 27th
International Symposium on. ACM.

[24] Per Erik Strandberg, Daniel Sundmark, Wasif Afzal, Thomas J Ostrand, and
Elaine J Weyuker. 2016. Experience Report: Automated System Level Regression
Test Prioritization Using Multiple Factors. In Software Reliability Engineering
(ISSRE), 2016 IEEE 27th International Symposium on. IEEE, 12–23.

[25] David A. Umphress, T. Dean Hendrix, James H. Cross II, and Saeed Maghsoodloo.
2006. Software visualizations for improving and measuring the comprehensibility
of source code. Science of Computer Programming 60, 2 (2006), 121 – 133.

[26] Shin Yoo and Mark Harman. 2012. Regression testing minimization, selection
and prioritization: a survey. Software Testing, Ver. & Rel. 22, 2 (2012), 67–120.

[27] Tao Zhang, He Jiang, Xiapu Luo, and Alvin T.S. Chan. 2016. A Literature Review
of Research in Bug Resolution: Tasks, Challenges and Future Directions. Comput.
J. 59, 5 (2016), 741–773.

A INTERVIEW QUESTIONS
• Questions about the interviewee:

– How long have you worked with IT?
– What is your role at the company?

• General questions about theWeOSRelease Process/day-to-daywork/
merging a feature branch:
– How are decisions (based on nightly testing) made when releasing

a newWeOS version? Or How do you decide on what to do in the
morning? Or How do you decide on merging a feature branch to
a master branch?

– Do you have a internal document that describes it?
• Specific question about the visualization aspects that support three
critical decision-making points:
– How do you use the visualizations to help you near the WeOS

release time/in day-day work/at merging a feature branch to the
master branch?

B QUESTIONNAIRE
All the questions below had a Likert-scale answering options (strongly
agree, disagree, neither agree or disagree, agree, strongly agree) and free
text space for optional comments.

• Do you think the existing visualization support is enough for you
to make a sound decision for WeOS release/in day-day work/at
merging a feature branch to the master branch?

• How easy is to understand the different visualizations that helps you
near the WeOS release time/in day-day work/at merging a feature
branch to the master branch?

• How easy is to learn the meaning of different visualizations that
helps you near the WeOS release time/in day-day work/at merging
a feature branch to the master branch?

• How time consuming is it for you to use the visualizations?
• How easy is it to navigate between the different views/pages of the
web-based visualization support?

10

https://www.youtube.com/watch?v=5W_VLzNhT-s
https://www.youtube.com/watch?v=5W_VLzNhT-s

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Industrial Case Study Design
	3.1 Case, Subject Selection & Industrial Context
	3.2 Data Collection
	3.3 Ethical Considerations
	3.4 Data Analysis
	3.5 Validity Analysis

	4 Results
	4.1 RQ1: Visualizations for Decision Making
	4.2 RQ2: Perceived Value of Visualizations

	5 Discussion
	6 Conclusion
	References
	A Interview questions
	B Questionnaire

