
Automated System-Level Software Testing of Industrial
Networked Embedded Systems

Per Erik Strandberg1,2

1Westermo Network Technologies AB, Västerås, Sweden
Email: per.strandberg@westermo.com

2Mälardalen University, Västerås, Sweden
Email: per.erik.strandberg@mdh.se

2021

And into the forest I go to lose my mind and find my soul.
– John Muir (1838-1914)

Abstract
Embedded systems are ubiquitous and play critical roles
in management systems for industry and transport. Soft-
ware failures in these domains may lead to loss of pro-
duction or even loss of life, so the software in these sys-
tems needs to be reliable. Software testing is a standard
approach for quality assurance of embedded software,
and many software development processes strive for test
automation. Out of the many challenges for successful
software test automation, this thesis addresses five: (i)
understanding how updated software reaches a test en-
vironment, how testing is conducted in the test environ-
ment, and how test results reach the developers that up-
dated the software in the first place; (ii) selecting which
test cases to execute in a test suite given constraints on
available time and test systems; (iii) given that the test
cases are run on different configurations of connected
devices, selecting which hardware to use for each test
case to be executed; (iv) analyzing test cases that, when
executed over time on evolving software, testware or
hardware revisions, appear to randomly fail; and (v)
making test results information actionable with test re-
sults exploration and visualization.

The challenges are tackled in several ways. First, to
better understand the flow of information in the embed-
ded systems software development process, interviews
at five different companies were conducted. The results
show how visualizations and a test results database sup-
port decision-making. Results also describe the over-
all flow of information in software testing: from devel-
opers to hardware in the test environment, and back to
developers. Second, in order to address the challenges
of test selection and hardware selection, automated ap-
proaches for testing given resource constraints were im-
plemented and evaluated using industrial data stemming
from years of nightly testing. It was shown that these

approaches could solve problems such as nightly test-
ing not finishing on time, as well as increasing hardware
coverage by varying hardware selection over test itera-
tions. Third, the challenge of intermittently failing tests
was addressed with a new metric that can classify test
cases as intermittently or consistently failing. Again,
by using industry data, factors that lead to intermittent
failures were identified, and similarities and differences
between root causes for intermittently and consistently
failing tests were observed. Finally, in order to better
render test results actionable, a tool was implemented
for test results exploration and visualization. The im-
plementation was evaluated using a reference group and
logging of the tool’s usage. Solution patterns and views
of the tool were identified, as well as challenges for im-
plementing such a tool.

Note to Reader
This is a compact version of the introduction (kappa) of
my doctoral thesis. Some content has been removed or
shortened, but the section numbers are kept the same.

List of Publications Included in this Thesis
Paper A: P. E. Strandberg, E. P. Enoiu, W. Afzal, D.

Sundmark, and R. Feldt. “Information Flow in
Software Testing – An Interview Study with Em-
bedded Software Engineering Practitioners.” In
IEEE Access, 7:46434–46453, 2019 [118] (Instru-
ment: [117]).

Presentation: https://youtu.be/KVVVxe3dH8o

Paper B: P. E. Strandberg, D. Sundmark, W. Afzal, T.
J. Ostrand, and E. J. Weyuker. “Experience report:
Automated System Level Regression Test Priori-
tization using Multiple Factors.” In International
Symposium on Software Reliability Engineering,
IEEE, 2016 [122].

Winner of best research paper award at IS-
SRE’16.

1

ar
X

iv
:2

11
1.

08
31

2v
1

 [
cs

.S
E

]
 1

6
N

ov
 2

02
1

https://youtu.be/KVVVxe3dH8o

Developers Desk

Test Results

HW Test Env. External

"unused"

Process/Gate

Acceptance Testing

Req. PM TL

Unit Testing Integration Testing System Testing

Test Team

PushPull

Database

Figure 1: In the software development of embedded systems, one has to test the software as it runs on physical
devices. The testing can be automated, and this thesis covers some of the challenges that can arrive: How does the
information related to testing flow? How should test cases and hardware devices be selected for the testing? Why
do some test cases change verdict for no apparent reason? Finally, how can test results be made explorable and
visualized?

Paper C: P. E. Strandberg, T. J. Ostrand, E. J. Weyuker,
D. Sundmark, and W. Afzal. “Automated Test
Mapping and Coverage for Network Topologies.”
In International Symposium on Software Testing
and Analysis, ACM, 2018 [121].

Paper D: P. E. Strandberg, T. J. Ostrand, E. J. Weyuker,
D. Sundmark, and W. Afzal. “Intermittently Fail-
ing Tests in the Embedded Systems Domain.” In
International Symposium on Software Testing and
Analysis, ACM, 2020 [120].

Presentation: https://youtu.be/W1G5hVfp_Sw

Paper E: P. E. Strandberg, W. Afzal and D. Sundmark.
“Software Test Results Exploration and Visualiza-
tion with Continuous Integration and Nightly Test-
ing.”

Submitted to Springer’s International Journal on
Software Tools for Technology Transfer (STTT) in
July 2021.

1 Introduction

This chapter starts with a short history of industry-
academia collaboration and industrial doctoral studies,
before it introduces the personal and industrial context
of this thesis, and then it gives a background to the the-
sis.

1.1 Brief History of Research in Industry-
Academia Collaboration and Industrial
Doctoral Studies

Arora et al. [3] investigate the changes in American in-
novation from 1850 and onwards. In particular, they dis-
cuss the golden age of the corporate labs, with AT&T’s
Bell Labs that employed 15 thousand people (roughly
a tenth with PhDs) in the late 1960s. Fourteen Nobel
Prizes and five Turing Awards were awarded to alumni
at Bell Labs. The authors mention that since the 1980s,
the distances between universities and corporations have
grown. Universities focused on research on smaller and
smaller problems, leading to innovation that could not
be used at companies without great difficulty. Corpo-
rations instead focused on development. At this time,
corporate research started declining – publications per
firm decreased, and patents per firm has increased (ex-
cept in the life sciences). Some of the possible reasons
for this decline is the difference in attitude towards re-
search, where corporate research is often more mission-
oriented, and university research sometimes curiosity-
driven. More concretely, the decline might be caused by
(i) spill-over - where rivals use publications from a com-
pany in their patents, (ii) narrowed firm scope, (iii) in-
creased distances between manufacturing and R&D due
to changes in trade, outsourcing, and offshoring. Finally,
Arora et al. mention that (iv) tapping into knowledge and
invention from external sources has been simplified.

According to Geschwind [44], the Swedish doctoral
training and degree was reformed in 1969, inspired by

2

https://youtu.be/W1G5hVfp_Sw

ValueImprovements

Company Benefit

Company Interest

Researcher Benefit

Researcher Interest

New Knowledge

Common Problem

Funding and Resources

Collaborative Work

Value for Society

Relations and Trust

Value Publications

Figure 2: Industry-Academia collaboration based on Sannö et al. [106].

US systems. Doctoral studies contain research and
course work, corresponding to 4 years full time work.
In general, since the 1960s, there has been an increased
number of doctoral students, and since the end of the last
millennia also an increase in throughput. The share of
women has risen from 16% 1962 to about 50% in 2005.
There has also been a reduced admission in humanities
and about 40% of admitted doctoral students in Sweden
were recruited from abroad. In 1977, a reform led to for-
mation of several new universities in Sweden. Three rea-
sons for the reform were to provide universal access to
higher education, to limit outward migration stemming
from industrial restructuring, and to provide skilled em-
ployees to industry [4]. According to Smith [110], in the
mid 1990s the Swedish foundation for the advancement
of knowledge and competence started offering part of
funding for research if universities collaborated with in-
dustry. By 2000, thirteen industrial research schools had
started and in 2017, Chalmers University of Technology
alone had about 160 industrial doctoral students.

Assbring and Nuur [4] made a case study on the
perceived industrial benefits of participating in collab-
orative research school. They found that motivators
for companies include access to new knowledge and
state-of-the-art research, competence creation and reten-
tion, new or improved products and processes, as well
as legitimacy. Small firms are more mission-oriented,
whereas larger firms are more motivated by more gen-
eral goals such as developing competence.

The Swedish Higher Education Act [123] states that
higher education institutions shall involve external par-
ties and ensure that they can benefit from research find-
ings. Doing co-production, i.e. having an industry-
academia collaboration in research, is not only a way
to comply with regulations and recommendations, it can
also be a suitable way to conduct relevant research. For
co-produced research to be relevant and successful, the
research party and the industry party should share a

common understanding of the problem and be able to
communicate [31, 43, 55, 106]. This can be a chal-
lenge, as Sannö et al. point out [106], because these
two parties typically have differences in perspective with
respect to problem formulation, methodology, and re-
sult; as well as counterproductive differences in their
views on knowledge and in their driving forces. Lo
et al. [73] and Carver et al. [17] made studies in 2015
and 2016 on how practitioners perceived relevance of
research in software engineering. There seems to be no
correlation between citation count and its perceived rel-
evance, and papers with industrial co-authors were only
marginally more relevant. Sannö et al. discuss ways to
increase the impact of industry-academia collaboration
and present the model illustrated in Figure 2. As men-
tioned, the formulation of a common problem is cen-
tral. The model also illustrates that the impact of the
collaboration does not end with new knowledge – in-
stead the new knowledge can be seen as what drives fur-
ther industry-academia research through different bene-
fits. Weyuker and Ostrand [131] recommend that aca-
demics strive to involve at least one industry participant
that is committed to the goal of the study, and that the in-
dustry partner sees the research as relevant, valuable and
important. Eldh points out that an interest in continued
partnership is a good evaluation criteria for both indus-
try and academia [31]. A more detailed approach for
industry-academia collaboration was proposed by Mar-
ijan and Gotlieb [78]. Their process involves a model
in seven phases starting with problem scoping (focusing
on the industrial problem) and knowledge conception
(to formulate research problem); followed by develop-
ment, transfer, exploitation and adoption of knowledge
and technology; and ending in market research in order
to explore if benefits from the research could reach out-
side of the project. All research problems and questions
in this thesis have been formulated jointly while involv-
ing both industry and academia.

3

Figure 3: An example of a Westermo test system.

There is no doubt a great value in corporate research.
Arora et al. [3] argue that these labs solve practical prob-
lems, three of the reasons are that companies have the
ability to test innovation at scale by having large data
sets, companies are often multi-disciplinary and may
have unique equipment. Furthermore, doctoral studies
is no longer only perceived as a preparation for an aca-
demic career, PhD holders are attractive to industry [4].
Finally, many industrial doctoral students feel privileged
to carry out research in close collaboration with industry
[4].

1.2 Personal and Industrial Context

Providing information on context in software engineer-
ing research is relevant in order to allow readers to draw
valid conclusions from the research [27, 94, 105]. In
addition, in research dealing with qualitative data, the
researcher is “active in the research process” and there
is a risk for researcher bias where personal background
and industrial context could play a role [14, 93]. Here
I mention context such that a reader could take this into
consideration when reading this thesis.

Before starting as an industrial doctoral student in
2017, I worked for 11 years with software testing, devel-
opment, and requirements in the rail, nuclear, web, and
communication equipment domains. During the major-
ity of this time, I was a consultant, and as such, I led
a competence network on software testing for 5 years.
In this period of my life, I studied many test and re-
quirements certification syllabi and became a certified
tester as well as a certified professional for requirements
engineering (ISTQB foundation, ISTQB test manager,
ISTQB agile tester, and REQB CPRE Foundation).

I am employed full time at Westermo Network Tech-
nologies AB (Westermo), where I have worked with test
automation, test management and research. The com-
pany designs and manufactures robust data communica-

tion devices for harsh environments, providing commu-
nication infrastructure for control and monitoring sys-
tems where consumer grade products are not sufficiently
resilient. These devices and the software in them, are
tested nightly with the main purpose of finding software
regressions. In order to test for regressions, a number of
test systems built up of physical or virtualized devices
under test running the software under test have been con-
structed (see example in 3). Automated test cases have
also been implemented, as well as a test framework for
running the test cases. I first added code to this frame-
work in 2011, when it was being migrated into what is
now its current form. More recently, this framework has
started a transition from Python into the Go program-
ming language. Over time, more and more components
have been added to this eco-system for nightly testing,
such as the test selection process described in Paper B,
the test case mapping onto test systems described in Pa-
per C, and the test results database that is central to Pa-
per E.

In 2014, when the implementation of a test selec-
tion tool was evaluated, I wrote an internal report at
Westermo. At this time, I was encouraged to improve
the report and publish it in an academic context by the
software manager. Around the same time, I attended
a course for becoming ISTQB Certified Test Manager.
Through luck, connections and curiosity I got in con-
tact with the Software Testing Laboratory at MDH. Af-
ter some encouragement and coaching on how to write
an academic paper, I submitted an early version of Pa-
per B without coauthors. After being rejected with
very constructive feedback, we conducted an evalua-
tion of changes in fault distribution. Together with four
other authors, I submitted to ISSRE in 2016 and the pa-
per won the best research paper award. In parallel, I
learned about the upcoming Industrial Graduate School
ITS ESS-H, and after several rounds of discussion, I

4

0

10

20

30

Te
st

 S
ys

te
m

s

0

300

600

900

1200

Te
st

 C
as

es

0

20

40

60

B
ra

nc
he

s

20
12

-Q
2

20
13

-Q
1

20
14

-Q
1

20
15

-Q
1

20
16

-Q
1

20
17

-Q
1

20
18

-Q
1

20
19

-Q
1

20
20

-Q
1

20
21

-Q
1

Quarter

0

200

400

600

O
ut

co
m

es
 (k

)

Figure 4: Growth in test complexity at Westermo between 2012 and Q2 2021.

started as an industrial doctoral student in 2017.
During this period, Westermo migrated from a de-

velopment model loosely based on scrum to a feature-
driven development model based on kanban, where ev-
ery feature is developed in isolation from the others in
separate code branches, and then merged into a main
branch after a risk management process. This increased
parallelization of the testing of the branches makes it
harder to get resources for nightly testing, and makes
the results more sparse, in turn making the test results
more complicated to understand. As illustrated in Fig-
ure 4, the increase in complexity is not only visible in
number of branches, but also in the number of test cases
and test systems in use, as well as in the number of new
test cases executed.

My personal and industrial background has given me
unique insights in industrial software testing, which may
have had an impact on how problems have been formu-
lated, and how data has been collected and analyzed.

1.3 Background

The growth in complexity in the nightly testing (illus-
trated in Figure 4) is also present elsewhere, such as in
the automotive industry. Staron [113] reports on soft-
ware architecture in this domain. There has been a
growth in number of computers in a car, from at most
one in the 1970s, followed by the introduction of elec-
tronic fuel injection, anti-lock brakes, cruise control in

the late 1900s and autonomous driving and automated
breaking when obstacles are detected in the early 2000s.
Staron mentions that cars in 2015 could have 150 com-
puters with more than 100 million lines of code, and that
some of the trends here are: heterogeneity and distribu-
tion of software, variants and configuration, autonomous
functions as well as connectivity and cooperation be-
tween nodes.

Embedded systems are becoming ubiquitous. They
range from portable sensors to communication equip-
ment providing infrastructure, as part of a train or other
vehicles, industrial plants or in other applications. As
many as 90% of newly produced processors are part of
embedded systems [41]. Software failures in commu-
nication equipment can lead to isolation of nodes in a
vehicle or a plant, leading to delays, loss of productiv-
ity, or even loss of life in extreme cases. The software in
embedded systems needs to be of high quality and soft-
ware testing is the standard method for detecting short-
comings in quality.

Software testing, can be defined1 as the act of man-
ually or automatically inspecting or executing software
with or without custom hardware in order to gather in-
formation for some purpose: feedback, quality control,

1This definition partially overlaps with definitions from both the
International Software Testing Qualifications Board (ISTQB) and the
ISO/IEC/IEEE 29119-1 standard [58, 128]. Many other definitions
exist.

5

DeviceFunction File Library Test System Test Env.OS

Figure 5: Perspectives of testing: from low level (source code functions) to high level (system).

finding issues, building trust, or other. An important as-
pect of testing embedded systems is to do testing on real
hardware [7, 134]. For some of the testing, emulators
and simulators can be suitable, but these should be com-
plemented with physical hardware [102]. Testing could
also iterate from being on host and target hardware [21].
By testing on target hardware, timing and other non-
functional aspects can be verified along with functional
correctness. One common approach for testing on real
hardware is to build test systems of the embedded de-
vices in network topologies, in order to support testing.

An overwhelming majority of the software testing
conducted in industry is manual. Kasurinen et al. found
it as high as 90% in a study in Finland in 2010 [63]. A
practitioner focused report from 2015 found that only
28% of test cases are automated [111]. Test automation
can reduce the cost involved and also improve time to
market [132]. If tests can run with minimal human inter-
vention, considerable gains in test efficiency are possi-
ble. Indeed, many organizations strive for agile and con-
tinuous development processes, where test automation
is an important part, and research has been done on how
to achieve this [89]. For organizations developing net-
worked embedded systems to be successful in this tran-
sition, they would need a number of things in addition
to agile processes. First of all, they would need a way
to automate testing with a test framework and test cases.
Test suites would have to run every now and then. The
test framework needs to know how to log in, upgrade,
and configure the hardware in the test systems. If the
organizations develop many different hardware models,
they would need several test systems with different sets
of hardware. In order to utilize the resources optimally,
the test systems might be shared: humans use them by
day and machines run nightly testing when no one is in
the office. This way developers and testers could use
the test systems for development, fault finding and man-
ual testing. During the nights, the organizations would
benefit from potentially massive and broad automated
testing. This type of testing, on this high level, could be
called automated system level testing in the context of
networked embedded systems. This perspective is illus-
trated in the rightmost parts of Figure 5.

Wiklund et al. identified lack of time for testing as an
important challenge for test automation [132]. One rea-
son could be that system level testing is slow compared
to unit testing where a function, file or library may be
tested (left part of Figure 5). A typical test case for net-
worked embedded systems on system level could be a

firewall test. This test case would need at least three
devices under test (DUTs): a firewall node, an internal
node (to be protected by the firewall), and an external
node (trying to reach the internal node). Depending on
configuration and type of traffic, the outside node should
or should not be able to reach the inside node. These test
cases need time because they perform several configura-
tion and verification steps, send actual traffic in the net-
work, and the test framework analyzes the traffic sent.
Because testing is slow, it may not be feasible to run all
test cases every night, so the organizations need to de-
cide on which test cases to include in or exclude from
testing. This problem of regression test selection (RTS,
or SL-RTS for System Level RTS) is well-studied, but
very little previous research had been done on SL-RTS
in 2016 when Paper B was published.

Wiklund et al. also found that low availability of the
test environment is an important challenge for test au-
tomation [132], in particular if the test systems have
non-standard hardware [80]. There is thus a need to
maximize the value of the testing, given available re-
sources. If a large number of physical test systems are
built, and a large number of test cases designed, then
one would need a way to assign the hardware resources
of the test systems to the test cases, so that as many
test cases as possible could run on as many test systems
as possible. In this thesis, this process is referred to as
“mapping” of test cases onto test systems. If there is no
automated mapping, then each new test case might trig-
ger a need to build a new test system, which would be
expensive and limit the scalability of the testing. Also,
in order to maximize the value of the testing, the map-
ping process should make sure that, over time, each test
case utilizes different parts of the hardware in the test
systems, such that hardware coverage is increased.

A literature study from 2017 on continuous practices
identified that, as the frequency of integrations increase,
there is an exponential growth of information [108].
Similarly, Brandtner et al., identified that relevant in-
formation might be spread out in several systems [13].
One way to handle test results data is to implement a
test results database (TRDB). The TRDB could support
exploration, visualization and also provide overviews of
results, such that when engineers come to work in the
mornings, they could rapidly understand the results of
the nightly testing. It is therefore important to study and
learn from industrial practitioners how the information
flows in their testing processes, and how they make deci-
sions based on visualizations and other support systems

6

Developers Desk

Test Results

HW Test Env. External

"unused"

Process/Gate

Req. PM TL

Unit Testing Integration Testing System Testing

Test Team

PushPull

Database

RQ1

RQ2

RQ3

RQ4

RQ5

Acceptance Testing

Figure 6: Automated System-Level Software Testing of Industrial Networked Embedded Systems with highlighted
research questions (compare Figure 1).

enabled by the TRDB.
Intuitively, testing might be expected to be a deter-

ministic process – given the same stimuli to the same
system, one could expected the same response. How-
ever, this is not true, or rather: in practice, no one is able
to observe or control all variables that are of relevance to
a complex system, therefore testing is perceived as non-
deterministic when some tests intermittently fail. This
has been well studied, e.g. by Luo et al. [76] and has
been shown to be linked to poor quality test code [42].
However, most of the previous work has been conducted
on unit level testing of open source software. It appears
as if only four previous studies have considered higher
level testing [2, 29, 70, 125].

2 Research Process
The research of this thesis has largely followed the pro-
cess described in Figure 2. The common problem has
been that of automated system-level software testing of
industrial networked embedded systems. The work has
been funded by Westermo and the Swedish Knowledge
Foundation through the ITS ESS-H research school, and
collaborative work has been done, primarily between the
Software Testing Laboratory at Mälardalen University
and Westermo. Through the research effort new knowl-
edge has been generated, which gives benefits and value
to the company, the researchers, and for society in gen-
eral. The knowledge has led to improvements in work
processes and tools used at Westermo, and to academic
publications. The value and benefits have led to an in-
terest in continued collaborative research.

The research goal of this thesis is: to improve au-

tomated system-level software testing of industrial net-
worked embedded systems. The five research questions
of this thesis are organized to align with Figure 6, which
shows the overall information flow model discovered in
Paper A. In short, this thesis targets five questions that
can be positioned in different stages of this flow model:
How does information relevant to testing flow in an or-
ganization developing embedded systems? Which test
cases should be executed when there is not enough time?
Which hardware devices should be included in the test-
ing when there are too many possible combinations?
Why do some test cases intermittently fail? How can
information relevant to testing be presented to develop-
ers and testers such that they can make decisions? The
rest of this chapter describes these five questions in more
detail, the case study research method, as well as a dis-
cussion on research quality.

2.1 Research Questions

A challenge with testing embedded systems is under-
standing how updated software reaches a test environ-
ment, how testing is actually conducted in the test envi-
ronment, and how test results reach the developers that
updated the software in the first place (i.e. the elements
and arrows in Figure 6). The following research ques-
tion (RQ) was formulated in order to tackle this prob-
lem:

RQ1: How could one describe the flow of information
in software testing in an organization developing
embedded systems, and what key aspects, chal-
lenges, and good approaches are relevant to this
flow? (Paper A)

7

Despite a long history of research, the regression test
selection problem was relatively unexplored from a
system-level perspective at the time of Paper B (2016).
In Figure 6, test selection is illustrated as a process oc-
curring before testing and before software reaches the
test environment. The following RQ was formulated in
order to explore this problem from a system-level:

RQ2: What challenges might an organization have with
respect to system-level regression test selection in
the context of networked embedded systems, and
how could one address these challenges? (Paper B)

Similar to how regression test case selection occurs prior
to the actual testing, a subset of the available hardware
must also be selected for each test case – the mapping of
requirements of the test cases onto test systems. In Fig-
ure 6, a mapping can be thought of a process requiring a
test environment. This leads to the following RQ:

RQ3: What challenges might an organization have with
respect to test environment assignment in the con-
text of networked embedded systems, and how
could one address these challenges? (Paper C)

When system-level test cases are executed over time,
night after night, on embedded systems in an industrial
setting, there is almost always a drift in the software,
testware or hardware between test sessions. With the ex-
ception of mostly manual debugging and trouble shoot-
ing, rarely do companies invest effort in doing regres-
sion testing of unchanged systems. Instead, one desires
confirmation that recent changes have not introduced re-
gressions. Under these conditions, test cases may some-
times intermittently fail for no obvious reason, leading
to unexpected test results over time in the test results
database (Figure 6). This problem motivates the follow-
ing RQ:

RQ4: What are the root causes of intermittently failing
tests during system-level testing in a context under
evolution, and could one automate the detection of
these test cases? (Paper D)

System-level software testing of industrial networked
embedded systems produces large amounts of informa-
tion, and involves many automated decisions. In the
software development process, the results may be hard
to render into something actionable, in particular in the
daily activities of a software developer, when a new fea-
ture is about to be completed, and at release time. This
leads to the final RQ of this thesis:

RQ5: How could one implement and evaluate a system
to enhance visualization and exploration of test re-
sults to support the information flow in an organi-
zation? (Paper E)

2.2 The Case Study Research Method

According to Runeson et al. [105], case study research in
software engineering is useful in order to understand and
improve software engineering processes and products.
They define the case study research method as:

an empirical enquiry that draws on multiple
sources of evidence to investigate [. . .] a con-
temporary software engineering phenomenon
within its real-life context, especially when
the boundary between phenomenon and con-
text cannot be clearly specified.

The studies in this thesis are all case studies, but differ
in terms of aim and type of data used – both qualitative
and quantitative data has been collected and analyzed.
Paper A exclusively used qualitative data (in the form
of interviews), Papers C and D primarily used quantita-
tive data, and Papers B and E combine qualitative and
quantitative data.

When Paper A was being planned, a number of guide-
lines were considered. Kitchenham and Pfleeger pub-
lished a series of guideline papers in 2001 and 2002 [65,
66, 67, 68, 95, 96]. These had an influence on, for ex-
ample, Runeson et al. [105], that in turn has had an in-
fluence on the overall guideline paper followed for Pa-
per A: Linåker et al. [72].

A total of about 28 hours of audio and video has been
recorded and transcribed into about 185 pages of text
for this thesis (17 hours of audio transcribed into 130
pages of text for Paper A, 7 hours of video transcribed
into 36 pages of not as dense text for Paper E, and 4
hours of interview audio and 20 pages of text was col-
lected for Paper X3, on which Paper E is based). For the
data analysis of this qualitative data, many options were
available, e.g. grounded theory (for example described
by Stol et al. [114]), content analysis (as described for
the field of nursing by Graneheim and Lundman [46]),
and thematic analysis. There is a significant overlap be-
tween these methods, and also a drift of guidelines into
software engineering from the social sciences (e.g., the
Cruzes and Dybå guidelines for thematic analysis [22]).
In the initial stages of data analysis for Paper A, we held
a workshop among the authors where the decision to use
the recommendations of thematic analysis described for
the field of psychology by Braun and Clarke [14] was
taken. Among the authors we saw this approach as easy
to understand and suitable for the type of data at hand.

At the time, I (and the other authors too) felt that
the integrity and anonymity of the interviewees was of
great importance. The interviewees felt the same, and
some of them pointed out that leaked transcripts could
uniquely identify them, or be a form industrial espi-
onage. As part of the data collection process of Pa-
per A, an anonymization process based on existing eth-
ical guidelines, e.g. [124], was designed. This, in turn,
lead to Paper X5 on ethical interviews in software engi-
neering.

At the core of Paper B is an algorithm and tool for

8

SL-RTS that was evaluated with data from four years
of nightly testing – two years of data from before intro-
duction of the tool and two after. Paper C proposes and
describes the implementation of an algorithm and tool
for hardware selection, which was evaluated using 17
test systems and more than 600 test cases for a total of
more than ten thousand possible mappings. This way,
performance of the new tool could be compared with
the previous tool in use at Westermo. Paper D describes
a novel algorithm to identify intermittently or consis-
tently failing tests. The algorithm was used on test re-
sults from nine months of nightly testing and more than
half a million test verdicts were used in order to identify
test cases to investigate further. The extended analysis
used project artifacts, such as code commit messages,
bug trackers and so on, in order to find patterns for why
test cases are intermittently failing. Finally, Paper E in-
vestigates how to implement visualizations based on test
results, which again revolves around the development of
a tool. The tool was evaluated by transcribing recorded
reference group meetings, by member checking and by
analyzing log files from using the tool.

2.3 On Research Quality

The term software engineering was coined by Mar-
garet Hamilton while working on the Apollo program at
NASA [54] in an attempt to bring discipline, legitimacy
and respect to software. As pointed out by Felderer
and Travassos, software engineering has evolved from
its seminal moments at NASA (and NATO) aiming at
observing and understanding software projects in 1960s
and 1970s, via attempts to define methods for empirical
studies in the 1980s (such as the work on goal-question-
metric by Basili and Weiss [9]), to the formation of pub-
lication venues for empirical software engineering in the
1990s, into an evidence-based field of research [35].
In 2012, Runeson et al. published a book called “Case
Study Research in Software Engineering – Guidelines
and Examples” [105] which is one of the main guide-
lines used in this thesis.

As mentioned above, Arora et al. [3], argues that one
of the strengths of research at companies is the access
to data. However, when a company uses its own data
and tools to make research claims such as in this the-
sis, e.g. by using the SuiteBuilder tool “two thirds of
the failing tests are now positioned in the first third of
the test suites,” then this claim cannot easily be con-
firmed or rejected by someone not at the company. The
term falsifiability was coined by Popper in 1934 [98],
and it is sometimes used as a possible demarcation be-
tween science and pseudoscience. Without access to
company data and tools, would it be any easier to falsify
the statement about distribution of failing tests, than it
would be to falsify the claim that a teapot orbits the Sun
somewhere between Earth and Mars (Russell’s teapot)?
Intuitively, one might want to argue that this thesis is
scientific, but that belief in Russel’s teapot is pseudo-
scientific. Furthermore, in his famous paper “Why Most
Published Research Findings Are False” [57], Ioannidis

argues that lack of replication, lack of publications with
negative results, and over-emphasis on statistical signif-
icance are root causes for why many research findings
are false. Again, the statement on the fail distributions
is not only hard to falsify, it is also hard to replicate.
Claims that are easy to replicate are of course easier to
falsify. In retrospect, now in 2021, one would argue that
we as authors of the papers in this thesis, should have
made a greater effort to make data and tools available
to a greater audience. Or that we, in addition to explor-
ing challenges at one or a few companies, would also
have used publicly available sources such as open source
projects to evaluate findings, tools or hypotheses. If we
had, then the opportunities to replicate research findings
and the generalizability of the findings would have been
better.

It has been suggested that good research should have
both rigor and relevance. By doing so, one avoids con-
ducting research only for the sake of researchers. At the
core of rigor are carefully considered and transparent
research methods [60, 105, 106, 129].

Doing research in a certain context certainly has an
impact on generalizability. However, Briand et al. [16]
argue that “we see the need to foster [. . .] research fo-
cused on problems defined in collaboration with indus-
trial partners and driven by concrete needs in specific
domains [. . .]” In other words, research in a narrow con-
text may have high relevance, regardless of its general-
izability.

Research involving human practitioners may harm
these individuals, and ethical aspects are of relevance
to businesses as well. Smith [110] points out that being
an industrial doctoral student comes with unique ethical
risks, i.e. an industrial doctoral student might portray his
of her employer in a favorable light. For the research in
this thesis, we have had a focus on minimizing harm,
which has led to guidelines not part of this thesis (in
papers X5 and X6 [116, 119]). In addition to avoid-
ing harm to participants in the research, another ethical
aspect of this thesis is the potential for hiding decision
making criteria of an algorithm, which risks making de-
cisions inscrutable, and thereby disempowering stake-
holders [81].

One challenge with the case study research method
in software engineering is that when exploring a
“phenomenon [. . .] when the boundary between phe-
nomenon and context cannot be clearly specified” (as
Runeson et al. [105] defines a case study), the findings
might depend on the context and not the phenomenon.
In industrial case studies, many variables may have an
impact on what is being measured. There could there-
fore exist confounding factors, perhaps changes in a
software development process, that have not been inves-
tigated, or other threats to internal validity. However,
this threat has been addressed by involving both qual-
itative and quantitative research methods, and by col-
lecting data as to minimize the impact of confounding
variables. E.g., in Paper B, challenges with respect to re-

9

gression test selection were identified qualitatively. Pa-
per D used a quantitative metric for test case intermit-
tence that led to the identification of test cases that were
then qualitatively investigated. Furthermore, prolonged
involvement and industrial experience should also have
addressed this threat.

In the studies in this thesis, a number of constructs
are used (e.g., a flaky test, the mapping problem, and in-
formation flow). These do not always have a standard
definition, which leads to threats to construct validity,
not only in the research in this thesis, but in general in
the research community. One way to combat this threat
to validity is to carefully define terms, and be transpar-
ent about algorithms used to collect data and also how
qualitative data has been analyzed.

In all but one of the papers of this thesis, the results
stem from one context: the automated system-level test-
ing at Westermo. One should therefore consider external
validity before transferring results into other contexts.
However, there is a growing body of knowledge of in-
dustrial testing and system-level testing. It is also in-
teresting to speculate about generalizability, e.g. on test
selection or intermittently failing tests, from unit-level
testing to system-level testing. One such example could
be the finding in Paper D that test case assumptions (e.g.,
on timing) is a factor for intermittence that seems to be
common for both unit- and system-level testing.

By being transparent in the choice of, and strict in
the use of, scientific methods, while at the same time
considering humans and organizations, the research in
this thesis should be not only rigorous and relevant, but
also ethical.

3 Related Work
The research fields of software testing, regression test
selection, intermittently failing tests as well as commu-
nication and visualization are all well studied. However,
there is a notable gap between academia and industry
in these fields: an overwhelming majority of the actual
testing in the industry is manual, despite more than 40
years of research on regression test selection very little
of the research targets the system level, intermittently
failing tests have almost exclusively been explored on
unit level testing of open source software, and previous
work on the role of communication in software engi-
neering and software testing indicate that a requirements
specification is of great importance – in practice these
are unfortunately typically of poor quality. This chapter
discusses findings in these areas of research, and also
briefly mention the mathematical field of graph theory
and the subgraph isomorphism problem – topics related
to Paper C.

3.1 Industrial Software Testing

A lot of research has shown that industry seems to be
slow to adopt state of the art techniques for software test-
ing. Most testing is done manually, perhaps as much as
90% [63]. Well-defined test design techniques exist, but
testers “rely on their own experience more” [56]. The in-

dustrial use of issue trackers2 is sometimes flawed, and
many organizations don’t use one [63].

On the positive side, companies change over time and
many strive towards using more agile practices, such as
shortening feedback loops and adopting continuous in-
tegration [89]. In a literature study on continuous prac-
tices from 2017, Shahin et al. identified that, as code
integrations become more frequent, the amount of data
such as test results will increase exponentially [108].
Therefore it is “critical to collect and represent the in-
formation in [a] timely manner to help stakeholders to
gain better and easier understanding and interpretation
of the results. . . ” There is also a need for speeding up
continuous integration [112].

Agile software development practices can coexist
with traditional approaches, and they seem to benefit
from each other. Notander et al. points out that a “com-
mon belief is that agile processes are in conflict with
the requirements of safety standards. . . Our conclusion
is that this might be the case [sometimes], but not [al-
ways]” [86]. Ghanbari came to similar conclusions [45].
A study on communication in agile projects suggest that
plan-driven approaches are sometimes needed in agile
contexts [97]. Similarly, a recent study by Heeager and
Nielsen identified four areas of concern when adopting
agile practices in a safety critical context (documenta-
tion, requirements, life cycle and testing) [51].

When it comes to testing of embedded systems, an
important aspect is to investigate non-functional qual-
ities such as timing, and by testing on real hardware
one can achieve this [7, 41]. One could also alternate
between testing on hardware, virtual hardware and no
hardware [21].

In a literature study from 2019, bin Ali et al. involved
practitioners in the research process in order to iden-
tify industry-relevant research on regression testing [10].
Among other things, they recommend researchers to:
evaluate coverage of a technique at the feature level
(other coverage metrics were not seen as relevant for
practitioners), report on relevant context factors in de-
tail as opposed to reporting generally on many factors
and to study people-related factors.

3.1.1 Regression Test Selection

When organizations move towards nightly testing, and
run testing on the embedded systems, they risk ending
up with nights that are not long enough – too many
test cases and too little time. This is a strong mo-
tivator for introducing regression test selection (RTS).
A well-cited paper by Yoo and Harman proposes three
strategies for coping with RTS: Minimization, Selec-
tion, and Prioritization [135]. RTS can be based on
many different properties: code coverage [83], expected
fault locations [91], topic coverage [52], or historic data
such as last execution, fault detection, and coverage
data [30, 32, 52, 64]. Mathematical optimization ap-

2Issue tracking can also be referred to as bug tracking, defect re-
porting, or incident reporting [59, 87, 137].

10

proaches have been used [36, 53, 83] as well as genetic
algorithms [130]. Software fault prediction is a related
field, where one influential paper was written by Ostrand
et al. for traditional software development in large soft-
ware systems [91]. Elbaum et al. mentions that tradi-
tional regression testing techniques that rely on source
code instrumentation and availability of a complete test
set become too expensive in continuous integration de-
velopment environments, partly because of the high fre-
quency of code changes [30].

In 2017, when preparing my licentiate thesis, I identi-
fied four recent surveys on RTS, none of which was ap-
plicable to system-level RTS. The most recent one, from
2016 by Hao et al., mentions that most techniques have
been evaluated with programs smaller than 6 kSLOC
(SLOC = source lines of code) [49]. This is still very far
from many embedded systems where using the Linux
kernel alone results in a code base in the order of 10
MSLOC. Second, Catal and Mishra found that the dom-
inating techniques for RTS are coverage based [19] and
these can therefore be difficult to apply to system-level
software testing due to the instrumentation required.
The third survey, by Yoo and Harman, discuss a design-
based approach to run what seems to be unit-level test
cases: “Assuming that there is traceability between the
design and regression test cases, it is possible to perform
regression test selection of code-level test cases from the
impact analysis of UML design models” [135]. Finally,
Engström et al. published a paper in 2010 in which they
investigated 28 techniques, where 14 were on statement
level, the others were no higher than module level [33].

Now, in 2021, the body of knowledge on system-
level RTS has grown and is still growing. Ricken and
Dyck did a survey on multi-objective regression test op-
timization in 2017 [101] and they argue that duration
needed for test cases should be taken into account. Lou
et al. [75] did a literature study on regression test priori-
tization. They found that most approaches are not much
better than simple ones, the approaches target domains
where testing is so fast that selection is not really rele-
vant, and that no free and suitable tool exists (e.g. a tool
integrated with jUnit). In a 2020 doctoral thesis on test
selection, Haghighatkhah [48] proposes a RTS approach
that combines diversity (using test case distances) and
historic test data. Similarly, diversity has also been pro-
posed by Neto et al. [84]. In a systematic mapping study
from 2020 on test case prioritization in continuous in-
tegration environments, Prado Lima and Vergelio found
that history-based approaches is a dominating approach
in recent publications on RTS, few of the publications
they processed report on challenges in testing in a con-
tinuous integration context and that future work should
also include aspects of intermittently failing tests (flaky
tests) as well as time constraints [99].

Paper B builds upon the existing body of knowledge
in the field of RTS, as it was in 2016, and the paper
shows feasibility of system-level RTS by using a frame-
work of prioritizers that each investigate some priority-

giving aspect. Had the SL-RTS been implemented
from scratch today, then one could have also consid-
ered the diversity of the selection (see, e.g., Haghigh-
atkhah [48]), and made the tool more scalable as to
avoid making a test results database a bottleneck when
test complexity increases (see Figure 4). The Suite-
Builder tool described in Paper B, has had its database
questions simplified a few times in the seven years that
have passed since its implementation. A migration from
the old database schema and programming language has
started, as described in Paper E.

3.1.2 Test Environment Assignment

The body of knowledge with respect to assigning test
environments to test cases for execution seems to be in
its infancy. While Paper C was in submission, Kaindl et
al. published work on the same high level problem. In
their paper they “briefly sketch the technical essence of
[their] project” explaining that they plan to use a seman-
tic specification, an ontology, and a taxonomy to assign
test environments to a test case [62]. However, it seems
as if Paper C is the only study with a working solution
for this problem in the domain of networked embedded
systems.

Paper C investigates and discusses “the mapping
problem” and how it is related to the subgraph iso-
morphism problem. The subgraph isomorphism prob-
lem is a well-studied topic in the field of graph theory,
and much of the basic terminology is covered in books
such as Wilson’s introduction to graph theory [133].
There are a number of approaches to solving the sub-
graph isomorphism problem: satisfiability, for example,
is covered by both Knuth and Ullman [69, 126]. An-
other approach is to do a combinatorial search, such the
one described by Bonicci et al. [12]. In the test cases
and test systems at Westermo, there are frequently cy-
cles. If there is a cycle in a test case, then this must be
mapped onto a cycle in a test system. Algorithms for
identifying cycles are therefore of importance for im-
proving the mapping, e.g. work by Paton, or Yuster and
Zwick [92, 136].

3.1.3 Intermittently Failing Tests

According to Fowler [37, 38], a code smell is a “surface
indication” of a potential problem in code. Smelly tests
represent code smells in test code, such as test cases with
poor design or implementation choices. An example of
a test smell is “the local hero” test case that will pass in a
local environment, but fail when testing in the target en-
vironment because of undocumented dependencies that
were not satisfied [42]. A flaky test is a test that has
been executed at least twice and provided both passing
and failing verdicts, without any changes being made to
the underlying software, hardware or testware between
the two executions [76]. In other words, a flaky test is a
test case in which there is an apparent non-determinism
in the underlying software, hardware or testware. Flaky
tests have been widely studied, and many tests are flaky
because they are also smelly [127], and sometimes the

11

Source Transmitter Noise Receiver Destination

Message Signal
Signal

with Noise
Message

(received)

Figure 7: The Shannon-Weaver communication model.

removal of test smells leads to removal of flakiness.
Because of the requirement of unchanged software,

hardware and testware, the construct of a flaky test is
not very convenient in a resource constrained continuous
integration environment. Therefore, Paper D defines an
intermittently failing test as a test case that has been ex-
ecuted repeatedly while there is a potential evolution in
software, hardware and/or testware, and where the ver-
dict changes over time.3 The paper also defines a metric
to quantify test cases as more or less intermittently fail-
ing based on Markov chains [79, 100]. A similar metric
was presented by Breuer in 1973 [15], but discovered
independently, and created for another domain – Pa-
per D targets regression testing of software-intense em-
bedded system as opposed to describing faults in hard-
ware. Breuer seems to have been first to use Markov
chains to describe faults in a system, as opposed to mod-
eling the system. Another way of quantifying flakiness,
based on entropy, has been presented by Gao [40]. This
method requires code instrumentation (code coverage)
and was evaluated using Java programs with 9 to 90
thousand lines of code. One perceived advantage of
Gao’s metric is that it can be used to “weed out flaky
failures” whereas our approach targeted a better under-
standing of the root causes of intermittently failing tests.

Lou et al. [76] did an investigation on unit tests in
open source projects. They found that many tests were
flaky because of asynchronous waiting, concurrency, or
test order. Important problems with flaky tests, on this
level, are that they can be hard to reproduce, may waste
time, may hide other bugs and they can reduce the con-
fidence in testing such that practitioners ignore failing
tests [76]. Despite a large amount of research on flaky
tests on unit level, only four studies targeting intermit-
tently failing tests on a system level were identified
when Paper D was submitted: Ahmad et al. [2], Eck et
al. [29], Lam et al. [70], and Thorve et al. [125]. These
five studies combined allowed for identification of simi-
larities and differences between factors leading to inter-
mittently failing tests on unit and system levels.

3.2 Communication and Flow of Information

In a 60 year old publication [109] Shannon first de-
scribed what would later be known as the Shannon-
Weaver model of communication, shown in Figure 7.
This model has later been built upon to represent count-

3A recent paper by Barboni et al. [8] explores different definitions
and overlapping aspects of the terminology of flaky or intermittently
failing tests.

less variants. It contains an information source con-
verted into a message that a transmitter converts to a sig-
nal, noise is added to the signal from a noise source. The
signal and message then reach the destination. Later re-
search on this model add, among other things, medium
used, as well as the role of distances.

Information flow has an important overlap with the
concept of communication, it can be defined by a dis-
tributed system of agents and the relationships between
them. Information flow is important when a synergy be-
tween humans and software systems is required for a
work flow [26].

A theory for distances in software engineering “ex-
plains how practices improve the communication within
a project by impacting distances between people, activ-
ities and artifacts” [11]. As an example, the practice of
Cross-Role Collaboration has an impact on the tempo-
ral distance. Olson and Olson found that new technol-
ogy may make geographical distance smaller, making
cultural distances appear to be greater [88]. They also
found that modern communication media frequently re-
lies on technical solutions, such as a conference phone,
and when there are usability problems, the users adapted
their behavior instead of fixing the technology – by
shouting in the conference phone.

The requirements specification is the most impor-
tant document for testers during system testing, but
this document is often of poor quality [56], and is
one of the main sources of technical debt for safety
development [45]. Alternatively, documentation can
be seen as a complement to communication that can
help combat knowledge evaporation [77]. Human fac-
tors and the quality of the requirements specifications
were also mentioned in a qualitative interview study
“as essential for development of safety critical sys-
tems” [86]. Furthermore, the Annex E of the first part
of the ISO/IEC/IEEE 29119 standard acknowledges that
testers need to communicate, with various stakeholders,
in a timely manner, and that this communication may
be more formal (e.g., written reports) or oral (as in ag-
ile contexts) [58]. Similarly, the International Software
Qualifications Board, ISTQB, released their syllabus for
certification of test automation engineers [6] in 2016. It
covers topics that frequently occurred in our interviews
in Paper A. They recommend that one should: measure
benefits of automation (costs are easily seen), visualize
results, create and store logs from both the system under
test and the test framework, and generate reports after
test sessions.

12

Papers A and E extend the body of knowledge in the
field of communication and information flow in software
engineering with results on a holistic approach to the
flow of information in software testing, as well as a tool
for test results exploration and visualization.

3.3 Visualization

According to Diehl, there are three important aspects
of software visualization: structure, behavior and evo-
lution [24]. An early visualization technique to show
structure is from 1958 and generated control-flow dia-
grams because it “is not practical to expect [everyone]
to be intimately familiar with [all code]” [107]. Visu-
alizations may not only show structure but also com-
pare structures. One survey on software visualization,
present methods for visualizing static aspects with the
focus of source code lines, class metrics, relationships,
and architectural metrics [18].

In a well-cited paper from 2002, Jones et al. use
test results data with a combination of source code,
code coverage, unit tests and test results in a sort of an
extended Integrated Development Environment (IDE)
view [61]. A dashboard is a common approach for qual-
ity monitoring and control in the industry. These aim
at presenting one or more key performance indicators
(KPIs) over time [23, 39]. When visualizing test results,
there is a need for summaries [85], information may be
spread out in several different systems [13], one might
need to consider transitions between different views of a
test results visualization tool [90], and one should con-
sider that visualizations may target different stakehold-
ers for different purposes [115].

Rosling et al. argues that “The world cannot be un-
derstood without numbers. But the world cannot be
understood with numbers alone.” The Roslings devel-
oped software to visualize the improvements in world
health because students were found to perform worse
than random in quizzes on the topic [103, 104]. This
could be seen as an indication of the importance of vi-
sualizations for comprehending data. In his keynote
at the practitioner-oriented conference Beauty in Code
2018 [5], James Bach highlighted that stakeholders do
not know what to visualize: “What I had to do, is use
my skill as a tester, and my interest in visual design, and
complexity, and displays, and statistics, to try to come
up with something, that they, when they saw it – it would
be like someone seeing an iPhone for the first time, they
would say ‘I used to like Nokias and now I like Apple
phones’.” This could be seen as supporting findings in
Paper A, that visualizations are not prioritized and an in-
dividual skilled in other domains ends up being the one
preparing visualizations.

Adopting a data science approach at a company can
be hard – data science deals with collection, process-
ing, preparation and analysis of data, it is a cross-domain
discipline that requires skills beyond software engineer-
ing and computer science, e.g. mathematics and domain
knowledge [28]. Paper E strives to make test results
data visualized and explorable. Similar goals were held

in the q-rapids project4 where data was collected, pro-
cessed and then shown to product owners with the aim
of enhancing their cognition, situational awareness, and
decision-making capabilities [20]. Some of the chal-
lenges they have seen in their work on q-rapids are: to
be transparent about what a value or metric means and
its origins, integration with the tool and other tools, as
well as the need for the tool to be tailored to a com-
pany. Some of the lessons learned were to use a com-
mon entry point for the data, and that implementation
of the tool requires experts (e.g. when setting up data
collection streams and doing analysis of data) [82]. As
opposed to the q-rapids project, the tool described in Pa-
per E does not strive to distill test results data into key
performance indicators. Instead, it targets exploration
and visualization and, in some sense, interaction with
the data. Ahmad et al. [1] investigated information needs
for testing and identified eight needs that closely match
the work in Paper E, such as being aware of if, and if
so where (on which test system and code branch), a test
case fails.

With respect to the body of knowledge in the field of
visualization of software test results, Paper E confirms
some of the previous work (such as the importance of
visualizations, and the need to consider transitions be-
tween views). It also provides a long term case study of
the implementation and usage of test results visualiza-
tion and decision making, and shows the importance of
the TRDB.

4 Contributions
The research goal of this thesis is to improve auto-
mated system-level software testing of industrial net-
worked embedded systems. To reach the goal, the thesis
poses five RQs that have been targeted with five studies.
Each paper primarily targets one RQ (RQ1: Paper A,
RQ2: Paper B, etc.). This chapter revisits the RQs and
summarizes their main contributions (C).

4.1 RQ1: Information Flow

How could one describe the flow of information in soft-
ware testing in an organization developing embedded
systems, and what key aspects, challenges, and good ap-
proaches are relevant to this flow?

Paper A seems to be the first study to take a high level
approach to the flow of information in software testing.
For the study, twelve interviews with industry practi-
tioners were held. The interviewees were from five dif-
ferent companies and had an average of more than 14
years of experience. 17 hours of audio was recorded,
anonymized and transcribed into 130 pages of text, that
was analyzed with thematic analysis. The main contri-
butions of Paper A are:

C-A1: An overall model of the flow of information in
software testing.

4Q-Rapids: Quality-aware rapid software development: www.q-
rapids.eu.

13

https://www.q-rapids.eu/
https://www.q-rapids.eu/

C-A2: Six key factors that affect the flow of informa-
tion in software testing (how organizations conduct
testing and trouble shooting, communication, pro-
cesses, technology, artifacts, as well as how it is
organized).

C-A3: Seven main challenges for the information flow
(comprehending the objectives and details of test-
ing, root cause identification, poor feedback, post-
poned testing, poor artifacts and traceability, poor
tools and test infrastructure, and distances).

C-A4: Five good approaches for enhancing the flow
(close collaboration between roles, fast feedback,
custom test report automation, test results visual-
ization, and the use of suitable tools and frame-
works).

4.2 RQ2: Test Selection

What challenges might an organization have with re-
spect to system-level regression test selection in the con-
text of networked embedded systems, and how could one
address these challenges?

Paper B seems to be one of the first papers on system-
level regression test selection. The study covers three
industrial challenges with nightly regression testing:
nightly testing not finishing on time, manual work and
omitted tests, as well as no priority for the test cases.
These problems were solved by implementing Suite-
Builder. The algorithm was evaluated quantitatively us-
ing data from four years of nightly testing, as well as
qualitatively with interview data. The main contribu-
tions of Paper B are:

C-B1: The SuiteBuilder tool, a framework of prioritiz-
ers assigning priorities based on multiple factors.

C-B2: Empirical evidence that the tool improves the
testing process: test suites finish on time, and that
two thirds of the failing tests are now positioned in
the first third of the test suites.

4.3 RQ3: Hardware Selection

What challenges might an organization have with re-
spect to test environment assignment in the context of
networked embedded systems, and how could one ad-
dress these challenges?

When performing testing of embedded systems, it is
critical to also involve real hardware, and Paper C shows
what appears to be the first evaluated approach to solve
the mapping problem. The process of mapping involves
a way to map a test case onto a test system using graph
theory, in particular the graph models of the test sys-
tems and test cases. This way the subgraph isomorphism
problem is adapted to the context of networked embed-
ded devices. The prototype implementation was eval-
uated quantitatively with the available test systems and
test cases for more than 10.000 different pairs of graphs.
The main contributions of Paper C are:

C-C1: A new mapper, that was found to be more than
80 times faster than the old tool.

C-C2: An extension of the mapper, where the TRDB
with previous mappings is used to map in different
ways over time such that the DUT coverage grew
from a median of 33%, to a median of 100% in just
five iterations.

4.4 RQ4: Intermittently Failing Tests

What are the root causes of intermittently failing tests
during system-level testing in a context under evolu-
tion, and could one automate the detection of these test
cases?

Paper D defines a novel metric for intermittently fail-
ing tests. By analyzing more than half a million test
verdicts from nine months of nightly testing, both inter-
mittently and consistently failing tests were identified.
The main contributions of Paper D are:

C-D1: A novel metric that can identify intermittently
failing tests, and measure the level of intermittence
over the test base.

C-D2: Nine factors that may lead to intermittently fail-
ing tests for system-level testing of an embedded
system (test case assumptions, complexity of test-
ing, software and/or hardware faults, test case de-
pendencies, resource leaks, network issues, random
numbers issues, test system issues, and refactor-
ing).

C-D3: Evidence that finding the root cause of inter-
mittently failing tests often involves more effort,
when compared to root cause analysis of consis-
tently failing tests.

C-D4: Evidence that a fix for a consistently failing test
often repairs a larger number of failures found by
other test cases than a fix of an intermittently failing
test.

4.5 RQ5: Test Results Exploration and Visualiza-
tion

How could one implement and evaluate a system to en-
hance visualization and exploration of test results to
support the information flow in an organization?

Paper E focuses on a new tool, Tim, that was imple-
mented to replace an old system for test results explo-
ration and visualization (TREV). Work was prioritized
and evaluated with a reference group of 12 individuals.
From reference group meetings, 7 hours of video was
recorded and transcribed into 36 pages of text, and logs
from 201 days of using Tim was also collected. The
main contributions of Paper E are:

C-E1: Four solution patterns for TREV (filtering, ag-
gregation, previews and comparisons).

14

C-E2: Implementation and empirical evaluation of
eight views for TREV (start, outcomes, outcome,
session, heatmap, measurements, compare branch
and analyze branch views).

C-E3: Six challenges for TREV (expectations, anoma-
lies, navigation, integrations, hardware details and
plots).

5 Future Work
This thesis covers system-level test automation of em-
bedded systems, and in particular test results informa-
tion flow, regression test selection, hardware selection,
intermittently failing tests as well as test results explo-
ration and visualization. This chapter discusses some of
the potential for future research.

The topics of test results information flow and test
results exploration and visualization are partly overlap-
ping. Future work could investigate, on a higher level,
how an organization would benefit from automated test
reporting, as well as if or how humans and such a sys-
tem could co-create meaningful test reports – would this
be a way to bridge some of the challenges of combining
agile and traditional development?

Despite already being very well-researched, there
is room for more work on the regression test selec-
tion problem – in particular with respect to diversity,
what the characteristics of a good selection is, and how
different selection strategies impact these characteris-
tics. Perhaps industry and academia could co-create an
open source tool that could be adjusted to fit different
needs (such as when one organization requires a certain
code coverage, whereas another focuses on diversity)?
Also, if the test selection strategy was reactive (perhaps
search-based) and given the mandate to re-prioritize on
the fly during a test session, would that improve test cov-
erage, or other desirables of the testing?

As mentioned above, research on automated hardware
selection for testing embedded systems seems to be in its
infancy. However, perhaps a more generalized problem
of hardware selection could be well served from find-
ings in combinatorial testing of product lines or search-
based software engineering [25, 47, 50, 74]? With re-
spect to the results in this thesis, questions that remain
unanswered range from fundamental (is test coverage of
two different hardware platforms exactly twice as valu-
able as coverage of one?), via detailed (how different
would a tool using satisfiability to solve the mapping
problem be when compared to one that uses the sub-
graph isomorphism problem, and are they equally ex-
plicable to practitioners?), to extremely detailed (how
much does the performance of the mapping tool increase
if cycles in the test systems and test cases are consid-
ered?). The benefits and drawbacks of testing on actual
devices with hardware, on virtualized systems, or using
emulated hardware would also be interesting to explore.
When is it good enough to test without real hardware,
and when must it be used?

Similar to the regression test selection problem, the
topic of intermittently failing tests is receiving a great
amount of research attention. Most of this research is
done for unit-level testing, perhaps because most test
automation is done at this level and public data sets are
available. Some of this research seems to imply that the
root cause of the intermittence is in the test cases them-
selves, which Paper D identified as only one type of root
cause. A question that seems to remain unanswered is:
which of the root causes to intermittence are generaliz-
able across testing levels and domains?

Rule-based systems, such as the SuiteBuilder tool, is
a type of artificial intelligence (AI). More advanced AI
learns from data to become increasingly better at solving
tasks, sometimes at the price of transparency or explica-
bility [71, 119]. It is very clear that society in general,
and software test automation in particular, could gain
tremendously by adopting more AI. As this thesis is be-
ing written, Westermo has joined an industry-academia
research project involving AI (described in [34]). What
the exact outcomes will be remains to be seen, but in
general, it seems as if almost all aspects of this thesis
could benefit from further automation, with or without
AI.

6 Conclusions
As mentioned in the abstract of this thesis, embedded
systems appear almost everywhere and play a crucial
role for industrial and transport applications – software
testing is crucial for the quality assurance of these sys-
tems. This thesis addresses five challenges for auto-
mated system-level software testing of industrial net-
worked embedded systems. These challenges have been
tackled in five studies, each self-contained with its own
conclusion section. To conclude the thesis, this chapter
takes a step back, and looks at the big picture. A central
result of this thesis is that software testing can be seen
as a set of feedback loops, that can be visualized in the
flow diagram in Figure 1, which was one of the main
findings of Paper A. This study focused on the overall
flow of information in software testing. The remaining
studies fit well into this picture. Both test selection (Pa-
per B) and test environment assignment (Paper C) can be
seen as processes having an impact on what to test, and
with what to test, in the test environment. The role of the
test results database has, in one way, an importance after
the testing (e.g. to aid in reporting), but because it may
impact coming test selection and the coming test envi-
ronment assignment, it also has an importance before
the testing activity. The impact of intermittently failing
tests (Paper D) can be seen as having an influence on
test results, how it reaches developers and the distrust
of testing it might lead to for developers. The findings
on intermittently failing tests also point to a need to im-
prove software, hardware and testware in order to avoid
intermittent faults in these. The work on visualizing test
results and making them explorable (Paper E) is one ap-
proach of improving the feedback loop in Figure 1.

15

The research goal of this thesis is: to improve au-
tomated system-level software testing of industrial net-
worked embedded systems. In short, this has been
achieved with an improved understanding of the flow of
information in software testing, selection of test cases
and hardware for testing, with an investigation of inter-
mittently failing tests, as well as improved visualizations
of test results.

Acknowledgments
My research was funded by Westermo and the Swedish
Knowledge Foundation through grants 20150277 (ITS
ESS-H), and 20160139 (TESTMINE).

References
[1] A. Ahmad, O. Leifler, and K. Sandahl. Data visualisa-

tion in continuous integration and delivery: Information
needs, challenges, and recommendations. Wiley IET
Software, 2021.

[2] A. Ahmad, O. Leifler, and K. Sandahl. Empirical analy-
sis of practitioners’ perceptions of test flakiness factors.
Wiley Journal of Software Testing, Verification and Re-
liability, page e1791, 2021.

[3] A. Arora, S. Belenzon, A. Patacconi, and J. Suh. The
Changing Structure of American Innovation: Some
Cautionary Remarks for Economic Growth. University
of Chicago Press: Innovation Policy and the Economy,
20(1):39–93, 2020.

[4] L. Assbring and C. Nuur. What’s in it for industry? A
case study on collaborative doctoral education in swe-
den. Sage Publications: Industry and Higher Educa-
tion, 31(3):184–194, 2017.

[5] J. Bach. Beauty or Bugs: Using the Blink Oracle in
Testing. Keynote at the Beauty in Code Conference,
Malmö, Sweden, 2018.

[6] B. Bakker, G. Bath, A. Born, M. Fewster, J. Hauki-
nen, J. McKay, A. Pollner, R. Popescu, and I. Schiefer-
decker. Certified Tester Advanced Level Syllabus Test
Automation Engineer. Technical report, International
Software Testing Qualifications Board (ISTQB), 2016.

[7] A. Banerjee, S. Chattopadhyay, and A. Roychoudhury.
On Testing Embedded Software. Elsevier Advances in
Computers, 101:121–153, 2016.

[8] M. Barboni, A. Bertolino, and G. De Angelis. What
We Talk About When We Talk About Software Test
Flakiness. In International Conference on the Quality
of Information and Communications Technology, pages
29–39. Springer, 2021.

[9] V. R. Basili and D. M. Weiss. A Methodology for Col-
lecting Valid Software Engineering Data. IEEE Trans-
actions on Software Engineering, (6):728–738, 1984.

[10] N. bin Ali, E. Engström, M. Taromirad, M. R.
Mousavi, N. M. Minhas, D. Helgesson, S. Kunze, and
M. Varshosaz. On the search for industry-relevant re-
gression testing research. Springer Empirical Software
Engineering, 24(4):2020–2055, 2019.

[11] E. Bjarnason and H. Sharp. The role of distances in
requirements communication: a case study. Springer
Requirements Engineering, pages 1–26, 2015.

[12] V. Bonnici, R. Giugno, A. Pulvirenti, D. Shasha, and
A. Ferro. A subgraph isomorphism algorithm and its
application to biochemical data. BioMed Central: BMC
bioinformatics, 14(7):S13, 2013.

[13] M. Brandtner, E. Giger, and H. Gall. Supporting Con-
tinuous Integration by Mashing-Up Software Quality
Information. In Software Evolution Week, Conference
on Software Maintenance, Reengineering, and Reverse
Engineering. IEEE, 2014.

[14] V. Braun and V. Clarke. Using thematic analysis in psy-
chology. Taylor & Francis: Qualitative research in psy-
chology, 3(2):77–101, 2006.

[15] M. A. Breuer. Testing for Intermittent Faults in
Digital Circuits. IEEE Transactions on Computers,
100(3):241–246, 1973.

[16] L. Briand, D. Bianculli, S. Nejati, F. Pastore, and M. Sa-
betzadeh. The Case for Context-Driven Software Engi-
neering Research: Generalizability Is Overrated. IEEE
Software, 34(5):72–75, 2017.

[17] J. C. Carver, O. Dieste, N. A. Kraft, D. Lo, and T. Zim-
mermann. How Practitioners Perceive the Relevance of
ESEM Research. In International Symposium on Em-
pirical Software Engineering and Measurement. ACM-
IEEE, 2016.

[18] P. Caserta and O. Zendra. Visualization of the Static
Aspects of Software: A Survey. IEEE Transactions on
Visualization and Computer Graphics, 17(7):913–933,
2011.

[19] C. Catal and D. Mishra. Test case prioritization: a
systematic mapping study. Springer Software Quality
Journal, 21(3):445–478, 2013.

[20] M. Choraś, R. Kozik, D. Puchalski, and R. Renk.
Increasing product owners’ cognition and decision-
making capabilities by data analysis approach. Springer
Cognition, Technology & Work, 21(2):191–200, 2019.

[21] P. Cordemans, S. Van Landschoot, J. Boydens, and
E. Steegmans. Test-Driven Development as a Reli-
able Embedded Software Engineering Practice. In Em-
bedded and Real Time System Development: A Soft-
ware Engineering Perspective, pages 91–130. Springer,
2014.

[22] D. S. Cruzes and T. Dybå. Recommended Steps for
Thematic Synthesis in Software Engineering. In Inter-
national Symposium on Empirical Software Engineer-
ing and Measurement, pages 275–284. IEEE, 2011.

[23] F. Deissenboeck, E. Juergens, B. Hummel, S. Wagner,
B. M. y Parareda, and M. Pizka. Tool Support for Con-
tinuous Quality Control. IEEE Software, 25(5):60–67,
2008.

[24] S. Diehl. Past, Present, and Future of and in Soft-
ware Visualization. In International Conference on
Computer Vision, Imaging and Computer Graphics.
Springer, 2014.

[25] I. do Carmo Machado, J. D. McGregor, Y. C. Caval-
canti, and E. S. De Almeida. On strategies for test-
ing software product lines: A systematic literature re-
view. Elsevier Information and Software Technology,
56(10):1183–1199, 2014.

16

[26] C. Durugbo, A. Tiwari, and J. R. Alcock. Modelling
information flow for organisations: A review of ap-
proaches and future challenges. Elsevier International
Journal of Information Management, 33(3):597–610,
2013.

[27] T. Dybå, D. I. Sjøberg, and D. S. Cruzes. What Works
for Whom, Where, When, and Why? On the Role of
Context in Empirical Software Engineering. In Inter-
national Symposium on Empirical Software Engineer-
ing and Measurement. ACM-IEEE, 2012.

[28] C. Ebert, J. Heidrich, S. Martínez-Fernández, and
A. Trendowicz. Data Science: Technologies for Bet-
ter Software. IEEE Software, 36(6):66–72, 2019.

[29] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli.
Understanding Flaky Tests: The Developer’s Perspec-
tive. In Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of
Software Engineering. ACM, 2019.

[30] S. Elbaum, G. Rothermel, and J. Penix. Techniques for
Improving Regression Testing in Continuous Integra-
tion Development Environments. In International Sym-
posium on Foundations of Software Engineering, pages
235–245. ACM, 2014.

[31] S. Eldh. Some Researcher Considerations When Con-
ducting Empirical Studies in Industry. In International
Workshop on Conducting Empirical Studies in Industry,
pages 69–70. IEEE, 2013.

[32] E. Engström, P. Runeson, and A. Ljung. Improv-
ing Regression Testing Transparency and Efficiency
with History-Based Prioritization – An Industrial Case
Study. In International Conference on Software Test-
ing, Verification and Validation, pages 367–376. IEEE,
2011.

[33] E. Engström, P. Runeson, and M. Skoglund. A system-
atic review on regression test selection techniques. El-
sevier Information and Software Technology, 52(1):14–
30, 2010.

[34] R. Eramo, V. Muttillo, L. Berardinelli, H. Bruneliere,
A. Gomez, A. Bagnato, A. Sadovykh, and A. Cicchetti.
AIDOaRt: AI-augmented Automation for DevOps, a
Model-based Framework for Continuous Development
in Cyber-Physical Systems. In Euromicro Conferenece
on Digital Systems Design, 2021.

[35] M. Felderer and G. H. Travassos. The Evolution of Em-
pirical Methods in Software Engineering. In Contempo-
rary Empirical Methods in Software Engineering, pages
1–24. Springer, 2020.

[36] K. F. Fischer. A Test Case Selection Method for the
Validation of Software Maintenance Modifications. In
Computer Software and Applications Conference, vol-
ume 77, pages 421–426. IEEE, 1977.

[37] M. Fowler. Codesmell (blog post). https:
//martinfowler.com/bliki/CodeSmell.
html, 2006. Online, Accessed 2021-09-08.

[38] M. Fowler. Refactoring: Improving the Design of Ex-
isting Code. Addison-Wesley Professional, 2018.

[39] M.-E. Froese and M. Tory. Lessons Learned from
Designing Visualization Dashboards. IEEE Computer
Graphics and Applications, 36(2):83–89, 2016.

[40] Z. Gao. Quantifying Flakiness and Minimizing its Ef-
fects on Software Testing. PhD thesis, University of
Maryland, 2017.

[41] V. Garousi, M. Felderer, Ç. M. Karapıçak, and U. Yıl-
maz. What We Know about Testing Embedded Soft-
ware. IEEE Software, 2017.

[42] V. Garousi and B. Küçük. Smells in software test code:
A survey of knowledge in industry and academia. Else-
vier Journal of Systems and Software, 138:52–81, 2018.

[43] V. Garousi, K. Petersen, and B. Ozkan. Challenges
and best practices in industry-academia collaborations
in software engineering: A systematic literature re-
view. Elsevier Information and Software Technology,
79:106–127, 2016.

[44] L. Geschwind. Doctoral Training in Sweden: History,
Trends and Developments. In Doctoral Education for
the Knowledge Society, pages 35–49. Springer, 2018.

[45] H. Ghanbari. Seeking Technical Debt in Critical Soft-
ware Development Projects: An Exploratory Field
Study. In Hawaii International Conference on System
Sciences, pages 5407–5416. IEEE, 2016.

[46] U. H. Graneheim and B. Lundman. Qualitative content
analysis in nursing research: concepts, procedures and
measures to achieve trustworthiness. Elsevier Nurse
Education Today, 24(2):105–112, 2004.

[47] J. D. Hagar, T. L. Wissink, D. R. Kuhn, and R. N.
Kacker. Introducing Combinatorial Testing in a Large
Organization. IEEE Computer, 48(4):64–72, 2015.

[48] A. Haghighatkhah. Test case prioritization using build
history and test distances: An approach for improving
automotive regression testing in continuous integration
environments. PhD thesis, University of Oulu, 2020.

[49] D. Hao, L. Zhang, and H. Mei. Test-case prioritiza-
tion: achievements and challenges. Springer Frontiers
of Computer Science, 10(5):769–777, 2016.

[50] M. Harman and B. F. Jones. Search-based software en-
gineering. Elsevier Information and Software Technol-
ogy, 43(14):833–839, 2001.

[51] L. T. Heeager and P. A. Nielsen. Meshing agile and
plan-driven development in safety-critical software: a
case study. Springer Empirical Software Engineering,
pages 1–28, 2020.

[52] H. Hemmati, Z. Fang, and M. V. Mantylä. Prioritiz-
ing Manual Test Cases in Traditional and Rapid Release
Environments. In International Conference on Software
Testing, Verification and Validation, pages 1–10. IEEE,
2015.

[53] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy.
The Art of Testing Less without Sacrificing Quality.
In International Conference on Software Engineering,
pages 483–493. IEEE Press, 2015.

[54] R. Hind. The First computer on the Moon. Oxford Uni-
versity Press: ITNOW, 61(3):22–23, 2019.

[55] S. E. Hove and B. Anda. Experiences from Conducting
Semi-Structured Interviews in Empirical Software En-
gineering Research. In International Software Metrics
Symposium, pages 10–pp. IEEE, 2005.

17

https://martinfowler.com/bliki/CodeSmell.html
https://martinfowler.com/bliki/CodeSmell.html
https://martinfowler.com/bliki/CodeSmell.html

[56] T. Illes-Seifert and B. Paech. On the Role of Communi-
cation, Documentation and Experience during System
Testing – An Interview Study. In Prozessinnovation mit
Unternehmenssoftware Workshop at the Multikonferenz
Wirtschaftsinformatik. Springer, 2008.

[57] J. P. A. Ioannidis. Why Most Published Research Find-
ings Are False. PLoS Medicine, 2(8):e124, 2005.

[58] ISO/IEC/IEEE. Software and systems engineering –
Software testing – Part 1: Concepts and definitions.
ISO/IEC/IEEE Standard 29119-1:2013, International
Organization for Standardization, International Elec-
trotechnical Commission, Institute of Electrical and
Electronics Engineers, 2013.

[59] ISO/IEC/IEEE. Software and systems engineering
– Software testing – Part 3: Test documentation.
ISO/IEC/IEEE Standard 29119-3:2013, International
Organization for Standardization, International Elec-
trotechnical Commission, Institute of Electrical and
Electronics Engineers, 2013.

[60] M. Ivarsson and T. Gorschek. A method for evaluat-
ing rigor and industrial relevance of technology eval-
uations. Springer Empirical Software Engineering,
16(3):365–395, 2011.

[61] J. A. Jones, M. J. Harrold, and J. Stasko. Visualization
of Test Information to Assist Fault Localization. In In-
ternational Conference on Software Engineering, pages
467–477. ACM, 2002.

[62] H. Kaindl, F. Lukasch, M. Heigl, S. Kavaldjian,
C. Luckeneder, and S. Rausch. Verification of Cyber-
Physical Automotive Systems-of-Systems: Test En-
vironment Assignment. In International Conference
on Software Testing, Verification and Validation Work-
shops. IEEE, 2018.

[63] J. Kasurinen, O. Taipale, and K. Smolander. Software
Test Automation in Practice: Empirical Observations.
Hindawi Advances in Software Engineering, 2010.

[64] J.-M. Kim and A. Porter. A History-Based Test Prior-
itization Technique for Regression Testing in Resource
Constrained Environments. In International Confer-
ence on Software Engineering, pages 119–129. ACM,
2002.

[65] B. A. Kitchenham and S. L. Pfleeger. Principles of Sur-
vey Research Part 3: Constructing a Survey Instrument.
ACM SIGSOFT Software Engineering Notes, 27(2):20–
24, 2002.

[66] B. A. Kitchenham and S. L. Pfleeger. Principles of Sur-
vey Research Part 4: Questionnaire Evaluation. ACM
SIGSOFT Software Engineering Notes, 27(3):20–23,
2002.

[67] B. A. Kitchenham and S. L. Pfleeger. Principles of Sur-
vey Research Part 5: Populations and Samples. ACM
SIGSOFT Software Engineering Notes, 27(5):17–20,
2002.

[68] B. A. Kitchenham and S. L. Pfleeger. Principles of Sur-
vey Research Part 6: Data Analysis. ACM SIGSOFT
Software Engineering Notes, 28(2):24–27, 2003.

[69] D. Knuth. Fascicle 6: Satisfiability, volume 19 of
The Art of Computer Programming. Addison-Wesley,
Reading, Mass, 2015.

[70] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and
S. Thummalapenta. Root Causing Flaky Tests in a
Large-Scale Industrial Setting. In International Sym-
posium on Software Testing and Analysis. ACM, 2019.

[71] S. Legg and M. Hutter. A collection of definitions of
intelligence. IOS Press: Frontiers in Artificial Intelli-
gence and applications, 157:17, 2007.

[72] J. Linåker, S. M. Sulaman, M. Höst, and R. M.
de Mello. Guidelines for Conducting Surveys in Soft-
ware Engineering v. 1.1. Technical report, Lund Uni-
versity, Sweden, 2015.

[73] D. Lo, N. Nagappan, and T. Zimmermann. How Practi-
tioners Perceive the Relevance of Software Engineering
Research. In Joint Meeting on Foundations of Software
Engineering, pages 415–425. ACM.

[74] R. E. Lopez-Herrejon, L. Linsbauer, and A. Egyed. A
systematic mapping study of search-based software en-
gineering for software product lines. Elsevier Informa-
tion and Software Technology, 61:33–51, 2015.

[75] Y. Lou, J. Chen, L. Zhang, and D. Hao. A Survey on Re-
gression Test-Case Prioritization. In Advances in Com-
puters, volume 113, pages 1–46. Elsevier, 2019.

[76] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. An Em-
pirical Analysis of Flaky Tests. In International Sym-
posium on Foundations of Software Engineering, pages
643–653. ACM, 2014.

[77] O. Manai. How software documentation helps commu-
nication in development teams: A case study on archi-
tecture and design documents. Bachelor’s Thesis, Uni-
versity of Gothenburg, 2019.

[78] D. Marijan and A. Gotlieb. Industry-Academia re-
search collaboration in software engineering: The Cer-
tus model. Elsevier Information and Software Technol-
ogy, 132:106473, 2021.

[79] A. A. Markov. Extension of the law of large numbers
to dependent quantities. Izv. Fiz.-Matem. Obsch. Kazan
Univ.(2nd Ser), 15:135–156, 1906.

[80] T. Mårtensson, D. Ståhl, and J. Bosch. Continuous Inte-
gration Applied to Software-Intensive Embedded Sys-
tems – Problems and Experiences. In International
Conference on Product-Focused Software Process Im-
provement, pages 448–457. Springer, 2016.

[81] K. Martin. Ethical Implications and Accountability
of Algorithms. Springer Journal of Business Ethics,
160(4):835–850, 2019.

[82] S. Martínez-Fernández, A. M. Vollmer, A. Jedlitschka,
X. Franch, L. López, P. Ram, P. Rodríguez, S. Aara-
maa, A. Bagnato, M. Choraś, and J. Partanen. Continu-
ously Assessing and Improving Software Quality With
Software Analytics Tools: A Case Study. IEEE Access,
7:68219–68239, 2019.

[83] D. Mondal, H. Hemmati, and S. Durocher. Exploring
Test Suite Diversification and Code Coverage in Multi-
Objective Test Case Selection. In International Confer-
ence on Software Testing, Verification and Validation,
pages 1–10. IEEE, 2015.

[84] F. G. D. O. Neto, R. Feldt, L. Erlenhov, and J. B. D. S.
Nunes. Visualizing test diversity to support test opti-
misation. In Asia-Pacific Software Engineering Confer-
ence, pages 149–158. IEEE, 2018.

18

[85] A. Nilsson, J. Bosch, and C. Berger. Visualizing Testing
Activities to Support Continuous Integration: A Multi-
ple Case Study. In International Conference on Agile
Software Development, pages 171–186. Springer, 2014.

[86] J. P. Notander, M. Höst, and P. Runeson. Challenges
in Flexible Safety-Critical Software Development – An
Industrial Qualitative Survey. In International Confer-
ence on Product Focused Software Process Improve-
ment, pages 283–297. Springer, 2013.

[87] K. Olsen, T. Parveen, R. Black, D. Friedenberg,
M. Hamburg, J. McKay, M. Posthuma, H. Schaefer,
R. Smilgin, M. Smith, S. Toms, S. Ulrich, M. Walsh,
E. Zakaria, T. Müller, A. Beer, M. Klonk, R. Verma,
D. Graham, E. van Veenendaal, S. Eldh, M. Pyhäjärvi,
and G. Thompson. Certified tester foundation level syl-
labus. Technical report, International Software Testing
Qualifications Board (ISTQB), 2018.

[88] G. M. Olson and J. S. Olson. Distance matters. Taylor &
Francis Human-Computer Interaction, 15(2):139–178,
2000.

[89] H. H. Olsson, H. Alahyari, and J. Bosch. Climbing the
“Stairway to Heaven” – A Multiple-Case Study Explor-
ing Barriers in the Transition from Agile Development
Towards Continuous Deployment of Software. In Con-
ference on Software Engineering and Advanced Appli-
cations, pages 392–399. IEEE, 2012.

[90] R. Opmanis, P. Kikusts, and M. Opmanis. Visualiza-
tion of Large-Scale Application Testing Results. Uni-
versity of Latvia: Baltic Journal of Modern Computing,
4(1):34, 2016.

[91] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Predict-
ing the location and number of faults in large software
systems. IEEE Transactions on Software Engineering,
31(4):340–355, 2005.

[92] K. Paton. An Algorithm for Finding a Fundamental Set
of Cycles of a Graph. Communications of the ACM,
12(9):514–518, 1969.

[93] M. Q. Patton. Qualitative Research & Evaluation Meth-
ods: Integrating Theory and Practice. Sage publica-
tions, 2014.

[94] K. Petersen and C. Wohlin. Context in Industrial Soft-
ware Engineering Research. In International Sympo-
sium on Empirical Software Engineering and Measure-
ment, pages 401–404. IEEE, 2009.

[95] S. L. Pfleeger and B. A. Kitchenham. Principles of Sur-
vey Research Part 1: Turning Lemons into Lemonade.
ACM SIGSOFT Software Engineering Notes, 26(6):16–
18, 2001.

[96] S. L. Pfleeger and B. A. Kitchenham. Principles of Sur-
vey Research Part 2: Designing a Survey. ACM SIG-
SOFT Software Engineering Notes, 27(1):18–20, 2002.

[97] M. Pikkarainen, J. Haikara, O. Salo, P. Abrahamsson,
and J. Still. The impact of agile practices on commu-
nication in software development. Springer Empirical
Software Engineering, 13(3):303–337, 2008.

[98] K. Popper. The logic of scientific discovery. Routledge,
2005.

[99] J. A. Prado Lima and S. R. Vergilio. Test Case Prioriti-
zation in Continuous Integration environments: A sys-
tematic mapping study. Elsevier Information and Soft-
ware Technology, page 106268, 2020.

[100] N. Privault. Understanding Markov Chains: Examples
and Applications. Springer, 2013.

[101] K. Ricken and A. Dyck. A Survey on Multi-objective
Regression Test Optimization. Full-scale Software En-
gineering/The Art of Software Testing, pages 32–37,
2017.

[102] P. Rosenkranz, M. Wählisch, E. Baccelli, and L. Ort-
mann. A Distributed Test System Architecture for
Open-source IoT Software. In Workshop on IoT chal-
lenges in Mobile and Industrial Systems, pages 43–48.
ACM, 2015.

[103] H. Rosling, A. Rosling Rönnlund, and O. Rosling. New
Software Brings Statistics Beyond the Eye. OECD
Statistics, Knowledge and Policy: Key Indicators to In-
form Decision Making, pages 522–530, 2005.

[104] H. Rosling, A. Rosling Rönnlund, and O. Rosling. Fact-
fulness: Ten Reasons We’re Wrong About the World –
and Why Things Are Better Than You Think. Flatiron
Books, 2018.

[105] P. Runeson, M. Höst, A. Rainer, and B. Regnell. Case
Study Research in Software Engineering: Guidelines
and Examples. John Wiley & Sons, 2012.

[106] A. Sannö, A. E. Öberg, E. Flores-Garcia, and M. Jack-
son. Increasing the Impact of Industry–Academia Col-
laboration through Co-Production. Technology Innova-
tion Management Review, 9(4), 2019.

[107] A. E. Scott. Automatic Preparation of Flow Chart List-
ings. Journal of the ACM, 5(1):57–66, 1958.

[108] M. Shahin, M. A. Babar, and L. Zhu. Continuous In-
tegration, Delivery and Deployment: A Systematic Re-
view on Approaches, Tools, Challenges and Practices.
IEEE Access, 5:3909–3943, 2017.

[109] C. E. Shannon. A Mathematical Theory of Communi-
cation. Bell System Technical Journal, 27, 1948.

[110] G. Smith. Ethical risks of pursuing participatory re-
search as an industrial doctoral student. In Multidis-
ciplinary Digital Publishing Institute Proceedings, vol-
ume 1, page 167, 2017.

[111] Sogeti, Capgemini, and HP. World Quality Report
2014-2015, 2015.

[112] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige.
Reinforcement Learning for Automatic Test Case Pri-
oritization and Selection in Continuous Integration. In
International Symposium on Software Testing and Anal-
ysis. ACM, 2017.

[113] M. Staron. Automotive Software Architectures: An In-
troduction. Springer, 2017.

[114] K.-J. Stol, P. Ralph, and B. Fitzgerald. Grounded The-
ory in Software Engineering Research: a Critical Re-
view and Guidelines. In International Conference on
Software Engineering, pages 120–131. ACM, 2016.

[115] P. E. Strandberg. Software Test Data Visualization with
Heatmaps – an Initial Survey. Technical report, MDH-
MRTC-318/2017-1-SE, Mälardalen University, 2017.

[116] P. E. Strandberg. Ethical Interviews in Software En-
gineering. In International Symposium on Empirical
Software Engineering and Measurement. IEEE, 2019.

19

[117] P. E. Strandberg, E. P. Enoiu, W. Afzal, D. Sund-
mark, and R. Feldt. Instrument from: Test Re-
sults Communication – An Interview Study in the
Embedded Software Industry. Technical report,
https://doi.org/10.5281/zenodo.1189562, 2018.

[118] P. E. Strandberg, E. P. Enoiu, W. Afzal, D. Sundmark,
and R. Feldt. Information Flow in Software Testing
– An Interview Study With Embedded Software En-
gineering Practitioners. IEEE Access, 7:46434–46453,
2019.

[119] P. E. Strandberg, M. Frasheri, and E. P. Enoiu. Eth-
ical AI-Powered Regression Test Selection. In Inter-
national Conference On Artificial Intelligence Testing.
IEEE, 2021.

[120] P. E. Strandberg, T. J. Ostrand, E. J. Weyuker, W. Afzal,
and D. Sundmark. Intermittently Failing Tests in the
Embedded Systems Domain. In International Sympo-
sium on Software Testing and Analysis, page 337–348.
ACM, 2020.

[121] P. E. Strandberg, T. J. Ostrand, E. J. Weyuker, D. Sund-
mark, and W. Afzal. Automated Test Mapping and Cov-
erage for Network Topologies. In International Sympo-
sium on Software Testing and Analysis, pages 73–83.
ACM, 2018.

[122] P. E. Strandberg, D. Sundmark, W. Afzal, T. J. Ostrand,
and E. J. Weyuker. Experience Report: Automated Sys-
tem Level Regression Test Prioritization Using Multiple
Factors. In International Symposium on Software Reli-
ability Engineering, pages 12–23. IEEE, 2016.

[123] Swedish Code of Statues. Higher Education Act (1992:
1434) (Högskolelagen (1992: 1434)), 1992.

[124] Swedish Research Council. Forskningsetiska principer
i humanistisk-samhällsvetenskaplig forskning. Techni-
cal report, 1996.

[125] S. Thorve, C. Sreshtha, and N. Meng. An Empirical
Study of Flaky Tests in Android Apps. In International
Conference on Software Maintenance and Evolution,
pages 534–538. IEEE, 2018.

[126] J. R. Ullmann. Bit-vector algorithms for binary con-
straint satisfaction and subgraph isomorphism. ACM
Journal of Experimental Algorithmics, 15:1–6, 2010.

[127] A. Vahabzadeh, A. M. Fard, and A. Mesbah. An Empir-
ical Study of Bugs in Test Code. In International Con-
ference on Software Maintenance and Evolution, pages
101–110. IEEE, 2015.

[128] E. van Veenendaal. Standard glossary of terms used in
software testing. Technical Report Version 2.3, Interna-
tional Software Testing Qualifications Board (ISTQB),
March 2014.

[129] F. Vermeulen. On Rigor and Relevance: Fostering Di-
alectic Progress in Management Research. Academy of
Management Journal, 48(6):978–982, 2005.

[130] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and
R. S. Roos. Time-Aware Test Suite Prioritization. In
International Symposium on Software Testing and Anal-
ysis, pages 1–12. ACM, 2006.

[131] E. J. Weyuker and T. J. Ostrand. Experiences with
Academic-Industrial Collaboration on Empirical Stud-
ies of Software Systems. In International Symposium

on Software Reliability Engineering Workshops, pages
164–168. IEEE, 2017.

[132] K. Wiklund, S. Eldh, D. Sundmark, and K. Lundqvist.
Impediments for software test automation: A system-
atic literature review. Wiley Journal of Software Testing,
Verification and Reliability, 27(8):e1639, 2017.

[133] R. J. Wilson. Introduction to Graph Theory, 5th Edition.
Prentice-Hall, 2010.

[134] W. H. Wolf. Hardware-Software Co-Design of Embed-
ded Systems. Proceedings of the IEEE, 82(7):967–989,
1994.

[135] S. Yoo and M. Harman. Regression testing minimiza-
tion, selection and prioritization: a survey. Wiley Jour-
nal of Software Testing, Verification and Reliability,
22(2):67–120, 2012.

[136] R. Yuster and U. Zwick. Finding Even Cycles
Even Faster. SIAM Journal on Discrete Mathematics,
10(2):209–222, 1997.

[137] T. Zhang, H. Jiang, X. Luo, and A. T. Chan. A Lit-
erature Review of Research in Bug Resolution: Tasks,
Challenges and Future Directions. Oxford University
Press: The Computer Journal, 59(5):741–773, 2016.

20

	1 Introduction
	1.1 Brief History of Research in Industry-Academia…
	1.2 Personal and Industrial Context
	1.3 Background

	2 Research Process
	2.1 Research Questions
	2.2 The Case Study Research Method
	2.3 On Research Quality

	3 Related Work
	3.1 Industrial Software Testing
	3.1.1 Regression Test Selection
	3.1.2 Test Environment Assignment
	3.1.3 Intermittently Failing Tests

	3.2 Communication and Flow of Information
	3.3 Visualization

	4 Contributions
	4.1 RQ1: Information Flow
	4.2 RQ2: Test Selection
	4.3 RQ3: Hardware Selection
	4.4 RQ4: Intermittently Failing Tests
	4.5 RQ5: Test Results Exploration and Visualization

	5 Future Work
	6 Conclusions
	References

