
Final Thesis

On text mining to identify gene networks with a
special reference to cardiovascular disease.

Per Erik Strandberg

LiTH - IFM - EX - 05 / 1382 - SE





On text mining to identify gene networks with a special reference to
cardiovascular disease.

IFM - The Department of Physics and Measurement Technology,Biology and Chemistry, Linköpings
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istry, Linköpings Universitet
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The rate at which articles gets published grows exponentially and the possibility to access texts in machine-readable
formats is also increasing. The need of an automated system to gather relevant information from text, text mining,
is thus growing.
The goal of this thesis is to find a biologically relevant genenetwork for atherosclerosis, the main cause of cardio-
vascular disease, by inspecting gene cooccurrences in abstracts from PubMed. In addition to this gene nets for yeast
was generated to evaluate the validity of using text mining as a method.
The nets found were validated in many ways, they were for example found to have the well known power law
link distribution. They were also compared to other gene nets generated by other, often microbiological, methods
from different sources. In addition to classic measurements of similarity like overlap, precision, recall and f-score
a new way to measure similarity between nets are proposed andused. The method uses an urn approximation and
measures the distance from comparing two unrelated nets in standard deviations. The validity of this approximation
is supported both analytically and with simulations for both Erdös-Rényi nets and nets having a power law link
distribution. The new method explains that very poor overlap, precision, recall and f-score can still be very far from
random and also how much overlap one could expect at random. The cutoff was also investigated.
Results are typically in the order of only 1% overlap but withthe remarkable distance of 100 standard deviations
from what one could have expected at random. Of particular interest is that one can only expect an overlap of 2
edges with a variance of 2 when comparing two trees with the same set of nodes. The use of a cutoff at one for
cooccurrence graphs are discussed and motivated by for example the observation that this eliminates about 60-70%
of the false positives but only 20-30% of the overlapping edges. This thesis shows that text mining of PubMed can
be used to generate a biologically relevant gene subnet of the human gene net. A reasonable extension of this work
is to combine the nets with gene expression data to find a more reliable gene net.
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Abstract

The rate at which articles gets published grows exponentially and the possibility to
access texts in machine-readable formats is also increasing. The need of an automated
system to gather relevant information from text, text mining, is thus growing.

The goal of this thesis is to find a biologically relevant genenetwork for atheroscle-
rosis, the main cause of cardiovascular disease, by inspecting gene cooccurrences in
abstracts from PubMed. In addition to this gene nets for yeast was generated to evalu-
ate the validity of using text mining as a method.

The nets found were validated in many ways, they were for example found to have
the well known power law link distribution. They were also compared to other gene
nets generated by other, often microbiological, methods from different sources. In ad-
dition to classic measurements of similarity like overlap,precision, recall and f-score
a new way to measure similarity between nets are proposed andused. The method
uses an urn approximation and measures the distance from comparing two unrelated
nets in standard deviations. The validity of this approximation is supported both ana-
lytically and with simulations for both Erdös-Rényi netsand nets having a power law
link distribution. The new method explains that very poor overlap, precision, recall and
f-score can still be very far from random and also how much overlap one could expect
at random. The cutoff was also investigated.

Results are typically in the order of only 1% overlap but withthe remarkable dis-
tance of 100 standard deviations from what one could have expected at random. Of
particular interest is that one can only expect an overlap of2 edges with a variance of
2 when comparing two trees with the same set of nodes. The use of a cutoff at one for
cooccurrence graphs are discussed and motivated by for example the observation that
this eliminates about 60-70% of the false positives but only20-30% of the overlapping
edges. This thesis shows that text mining of PubMed can be used to generate a biolog-
ically relevant gene subnet of the human gene net. A reasonable extension of this work
is to combine the nets with gene expression data to find a more reliable gene net.

Keywords: Atherosclerosis, Cardiovascular Disease, Cooccurrence,Data mining, Gene
networks, Literature networks, Prior incorporation, Textmining.
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Andreas Lundgren who helped me with excellent critical but constructive feedback and
linguistic comments; my supervisors Jesper Tegnér and Johan Björkegren and exam-
iner Bengt Persson for pushing me in the right directions; and of course my cooccurring
cohabitee Anna Hultén deserves many thanks for TLC and for making me eat, sleep
and shower.

We wish to acknowledge the help of the following software, programming lan-
guages et cetera: Cytoscape, Emacs, Firefox, Graphviz, MySQL, Python, . . .

People, organizations and enterprises behind important data, like abstracts [PubMed],
gene nets [Guelzim et al, Lee I et al, Lee TI et al, Luscombe et al] and synonym lists
[Euroscarf, HGNC, SGD] used in this thesis are worthy of a big“thank you guys”
from us for having this data publicly available on the web.

Strandberg, 2005, On text mining to identify gene networks.. . ix



x



Contents

Abstract vii

Acknowledgements ix

1 About this text 1

2 Introduction: Background, motivation and goals 3

3 Tutorial 5
3.1 What is atherosclerosis? . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 What is an abstract? . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 What is a cooccurrence? . . . . . . . . . . . . . . . . . . . . . . . . 5
3.4 What is a gene expression matrix? . . . . . . . . . . . . . . . . . . . 6
3.5 What is a graph? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.6 What is a MeSH term? . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.7 What is a gene network? . . . . . . . . . . . . . . . . . . . . . . . . 8
3.8 What genes do we expect in atherosclerosis? . . . . . . . . . . .. . . 11
3.9 What is an urn? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.10 What is precision, recall and f-score? . . . . . . . . . . . . . .. . . . 12

4 Methods 15
4.1 The workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 The cardiovascular disease case . . . . . . . . . . . . . . . . . . . .15
4.3 The yeast case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Example of a scan using the MeSH term foam cells . . . . . . . . .. 21

5 Validation and results 25
5.1 Link distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Pairwise comparisons of graphs 1: Overlap . . . . . . . . . . . .. . 27
5.3 Pairwise comparisons of graphs 2: P, R and F. . . . . . . . . . . .. . 27
5.4 Pairwise comparisons of graphs 3: the urn approximation. . . . . . . 27
5.5 The cutoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6 Comparing hit lists with hit lists . . . . . . . . . . . . . . . . . . .. 33
5.7 Validation and results: Recapitulation . . . . . . . . . . . . .. . . . 35

6 Summary, conclusion and discussion 39

Bibliography 41

A The appendix 45
A.1 Creating a random tree . . . . . . . . . . . . . . . . . . . . . . . . . 45
A.2 Creating a random network . . . . . . . . . . . . . . . . . . . . . . . 45
A.3 The database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
A.4 Pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Strandberg, 2005, On text mining to identify gene networks.. . xi



xii Contents



So this is a Harvard bar.
I thought there’d be equations and shit on the walls.

Good Will Hunting

1
About this text

THIS TEXT IS WRITTEN ASa master of science final thesis at Linköpings Univer-
sitet by Per Erik Strandberg with Jesper Tegnér and Johan Björkegren as super-
visors and Bengt Persson as examiner, in the autumn of 2004. This report covers

one way to find interesting genes and gene networks for the largest health issue we
know: cardiovascular disease or more specifically atherosclerosis. This report is part
of a greater study conducted by members of Linköpings Universitet and Karolinska
Institutet in collaboration. Some of the overall goals is tofind regulatory pathways,
responsible genes and with them evaluate and propose new treatments.

Below is a short list of the main chapters in this thesis, and what they treat.

Introduction: Background, motivation and goals: A brief background is given, ex-
plaining why gene nets are relevant, how scientists have found them in the past
and what we want to achieve in this thesis.

Tutorial: Some concepts occurring throughout the text are explained.Experienced
readers might want to skip this chapter, butt readers with little or no experience
of text mining should probably read this chapter carefully.Of particular interest
is the section explaining the urn and the section discussingP, R and F and the
examples in the end of each of them. The extension of the two examples is what
gives birth to a new validation method used in later chapters.

Methods: This chapter explains how the abstracts (the indata) are treated and how we
can go from abstracts to cooccurrences and from cooccurrences to gene nets. For
readers with little background in this area, this chapter (in combination with the
tutorial) is especially important in order to understand this thesis.

Validation and results: This chapter studies the gene nets we now have generated and
compares them with previous studies. In order to perform this validation a new
tool for doing pairwise comparisons of graphs is created. Inaddition to the final
chapter this is the most interesting chapter of this thesis.

Summary, conclusion and discussion:A summary of this thesis, with conclusions
and a discussion of how we can interpret the results.

Appendix: An appendix with some algorithms, psuedocode and database-schemas.

Strandberg, 2005, On text mining to identify gene networks.. . 1
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Why did you put that weapon together so quickly,
Gump?
You told me to, Drill Sergeant.

Forrest Gump 2
Introduction: Background, motivation

and goals

CARDIOVASCULAR DISEASE is the cause of almost one in two deaths in the
USA. Atherosclerosis (explained in next chapter) is the main cause of cardio-
vascular disease. Much effort has been put into understanding this condition

since describing and explaining how and why atherosclerosis occurs on a gene level is
one of the more important tasks for humanity in the postgenomic era. This final thesis
is one part of a larger study in which we want to use different methods to understand
atherosclerosis. One way of understanding this is to find a relevant gene network of the
disease.

When studying a large system it is often a good idea to study a part of it. As a
metaphor we could imagine traffic fluctuations. If we understand how a car behaves it
is easier to understand how the traffic behaves on a road and ina city. It is now probably
easy to model it in many other cities and even in a country or state. In a similar way
a gene net can be used to understand life: In order to understand life one might want
to study an organism, in order to understand an organism one might want to study one
of its cells, and in order to understand a cell one might want to understand a gene or a
net of genes. It is therefore very important to understand and explain gene networks in
order to understand and explain the dynamics of life. Another equally important reason
of understanding gene networks is to understand, explain, predict and remedy disease.
If we go back to the metaphor of traffic it is not hard to imaginethat if we understand
why and how traffic jams and accidents occur we might understand what could be
done to avoid them - perhaps by leading traffic via other roadsor closing some that are
dangerous. By studying gene nets we do not only understand the normal functions of
life, potentially we could also understand defect states better, such as cardiovascular
disease.

If we had the gene network of an organism or a disease we might ease the work of
pharmaceutical companies in their search for drugs. Sometimes such companies have
lists of how old drugs affect the state of genes in an organismor a cell, but they do not
necessarily have the gene network they are trying to attack.If they were to have this
gene network they could perform a more coordinated researchand potentially combine
drugs to target genes in a specific path and understand what genes that are the primary
affected genes and which ones that are affected in a secondary way.

Scientists have for some time used molecular biology to study how genes interact
with other genes. Two such methods are (i) microarray studies where the expressed
genes are measured to get information about which genes thatare active in a cell or tis-
sue and (ii) chip-chip (Chromatin Immunoprecipitation chip) techniques that are used

Strandberg, 2005, On text mining to identify gene networks.. . 3



4 Chapter 2. Introduction: Background, motivation and goals

to investigate interactions between proteins and DNA. Chip-chip is typically used on
yeast. A complement to these traditional methods is text mining.

One definition of text mining referred to in [Shatkay and Feldman] is “the com-
bined, automated process of analyzing unstructured natural language text in order to
discover information and knowledge that are typically hardto retrieve”. As opposed
to microarray techniques text mining is cheap: all one needsis a computer and some
data. The data, in this thesis abstracts from PubMed [PubMed], is often free and avail-
able from the internet. A second reason to use text mining is that it is quite fast - once
a system is up and running it is easy to add abstracts and scan for genes in different
subsets in it, there is the possibility to try almost any hypothesis. Text mining is more
and more becoming a complement to traditional methods, but will probably never be
able to replace molecular biology. One of the early large-scale text mining projects is
described in [Jenssen et al].

The goal of this thesis is to find a biologically relevant genenet for atherosclerosis
by investigating gene cooccurrences in PubMed. In order to do this we will: (i) Imple-
ment an automated system doing text mining. (ii) From this automated system gather
gene networks for yeast and show that these nets are relevantcompared to other gene
nets for yeast - possibly motivating that text mining is a valid method. (iii) Evaluate
results from atherosclerosis related scans by comparing hit lists of genes with other hit
lists.

The implementation of the automated system is explained in the Methods chapter
and the analysis of the nets and hit lists in the Validation and results chapter. There is
also a short Summary, conclusion and discussion chapter.



It’s talking Merry. The tree is talking.
Tree? I am no tree! I am an Ent.

The Two Towers

3
Tutorial

THIS TUTORIAL WILL MENTION and define some concepts later used in this the-
sis. Concepts an experienced reader might already be familiar with and want
to skip. Some concepts discussed are: atherosclerosis, abstract, cooccurrence,

graphs and the statisticians best friend: the urn. Of particular importance are the two
sections at the end and the examples in each of them, since this is a nice illustration
and motivation for the method developed to perform pairwisecomparisons of graphs.

3.1 What is atherosclerosis?

Cardiovascular disease is the cause of almost one in two deaths in the USA and atheroscle-
rosis is the main cause of cardiovascular disease. This is more than the one in three
deaths that cancer cause. Atherosclerosis is a complex gradual process that occurs
when cholesterol accumulates under the inner lining of artery walls due to damage
from uncontrolled high blood pressure, smoking, diabetes,or high blood cholesterol.
The deposits (cholesterol plaques) eventually result in fibrosis and calcification, which
may narrow or block the artery and hinder blood flow. Atherosclerosis is also called
“hardening of the arteries”. The disease can produce a chestpain when some part
of the heart does not receive enough blood (angina pectoris), heart attack, or stroke.
[AHA, Hansson, Humphries and Morgan, Libby, Lusis]

3.2 What is an abstract?

An abstract is a summary of an article written to allow for readers to get a condensed
version of a text. PubMed, [PubMed], a service of the National Library of Medicine,
includes millions of citations and almost as many abstractsfor biomedical articles and
allows users to download abstracts from the internet for free. The information is avail-
able in many formats, such as XML or a more readable format called “medline” as
illustrated in figure 3.1. This figure also shows the kind of information given in each
abstract.

3.3 What is a cooccurrence?

The text mining in this thesis has a simple and almost naive idea: if more than one
gene name occur in an abstract (or title) we say that each occurring pair in the ab-
stract is a cooccurrence. The cooccurrences are believed toreflect biological functions

Strandberg, 2005, On text mining to identify gene networks.. . 5



6 Chapter 3. Tutorial

PMID-14644386
DA -20031203
DCOM-20040826
DP -2003 Dec
TI -Effects of 3-deazaadenosine on homocysteine and atherosclerosis in

apolipoprotein E-deficient mice.
AB -OBJECTIVE: In the past decade, elevated homocysteine concentration has

achieved widespread recognition as an independent risk factor in the
development of atherosclerosis. 3-Deazaadenosine (c3Ado) is a potent
inhibitor and substrate for S-adenosylhomocysteine hydrolase and therefore
may reduce homocysteine concentrations. The current study investigated the
effect of c3Ado on serum homocysteine, atherosclerotic lesions, and the
expression of adhesion molecules in apoE-knockout mice. METHODS AND
RESULTS: Animals were placed on an atherogenic diet with or without c3Ado
for 12 and 24 weeks. Frozen cross-sections of the aortic sinus and the
proximal aorta were analyzed by computer-aided planimetry for fatty plaque
formation. Macrophages, VCAM-1 and ICAM-1 were quantified by
immunhistochemistry and oligo-cell reverse transcription polymerase chain
reaction after laser microdissection. Application of c3Ado resulted in
significant reduction of homocysteine levels by 35.9 and 45.3% after 12
and 24 weeks, respectively (P < 0.001). Neointimal area and
atherosclerotic plaque formation were significantly reduced in animals
treated with c3Ado (P < 0.01). Moreover, monocyte adhesion and concomitant
ICAM-1 and VCAM-1 antigen and RNA expression on the endothelial layer were
significantly reduced (P < 0.001, P < 0.01). CONCLUSION: Our results
demonstrate that c3Ado induces a marked reduction of homocysteine
concentrations which might explain in part the anti-atherogenic effect of
the drug.

Figure 3.1: Selected parts of an abstract. Notice that thereare “fields” like PMID, TI
and AB for PubMed identifier, title and abstract. The full abstract contains a lot more
information, like authors and so on.

[Jenssen et al]. We let a cooccurrence be displayed graphically by an edge between
two nodes in a network, like in figure 4.4. Here the nodes are the cooccurring genes
and the edges corresponds to cooccurrences and hopefully some biological function.
By doing this for many abstracts we quite rapidly get a large net.

3.4 What is a gene expression matrix?

Gene expression is the process by which a gene’s coded information is converted into
the structures present and operating in the cell. Expressedgenes include those that
are transcribed via RNA to proteins and those that are transcribed into RNA but not
translated into proteins.

When measuring gene expression one often measure some kind of concentration
of a genes RNA, for many genes in many samples. What you get canbe described as
a matrix where a column corresponds to a certain gene, and each row is a sample as
described in table 3.1. Traditionally the number of genes studied is much larger than
the number of samples.

3.5 What is a graph?

A graph can be described by two sets. The first, often called N,is a set of nodes. The
second, often called E, is a set of edges where each edge “connects” two nodes and an
edge can thus be considered to be a pair of nodes. In this text the nodes are genes or
sometimes MeSH terms. Graphs are often referred to as networks, nets, trees (and not
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gene1 gene2 gene3 gene4. . . geneN
sample1 54 49 87 12 . . . 52
sample2 64 41 97 16 . . . 98

...
...

...
...

...
. . .

...
sampleM 44 64 77 11 . . . 58

Table 3.1: An illustration of how a gene expression matrix could look.

ents), et cetera. More about graphs can be found in [Björn and Turesson], for example.
There are also many synonyms for edges and nodes and the general idea of what, for
example, a tree is is not constant in for example the Bayesianand computer science
communities. We here present a short list of some important concepts and terms and
explain how they are used in this thesis:

Directed acyclic graph: a directed graph has no undirected edges and is acyclic or a
DAG if it is impossible to start in a node and follow edges backto the initial
node. In graph (iii) in figure 3.2 there is a cycle: CDAC, it is thus not acyclic.
Graph (iv) is directed and acyclic, it is thus a DAG.

Tree: as for graphs in general, trees can be directed or undirected. A graph is a tree if
it contains no cycles. In trees there are as many edges as there are nodes minus
one. In a spanning tree all nodes are connected. (Often a set of trees is referred
to as a forest.) If we removed one of the edges in the cycle ABCDA in (i) in
figure 3.2 it would be a tree.

The degree,or sometimes cardinality, of a node is the number of edges it is included
in. For directed graphs there is a difference between indegree and outdegree.
Often a node with a large degree is called a hub.

Link distribution: a curve or scatterplot showing the number of nodes having a cer-
tain degree, or as a mathematician would say: number of nodesas a function of
degree.

A complete graph is a graph in which all nodes are connected to all other nodes.Like
(ii) in figure 3.2.

Erdös-Rényi random graphs (ER graphs) are a classic class of random graphs. In
this class all potential edges have the same probability of being an edge in the
graph. This is equivalent to say that all possible pairs of nodes have the same
probability of being connected. By varying this probability the characteristics
of the graph dramatically change. Typically ER graphs have no leaves and no
extremely connected nodes, instead the majority of nodes have about the same
degree [Barabási].

Preferential attachment, another class of graphs could be said to have “preferential
attachment”. This can be interpreted in the following way: when we construct
a graph, we add edges one by one and they act as if they want to beattached to
nodes with a high degree. Typically these graphs have many leaves and a few
extremely connected nodes. The link distribution of these graphs is linear in
log-log-scale.
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A

B

C

D

EF

G

A
B

C

D

A

B

C

D

A

B

C D A
B1

C

4

D 2

E

3

3

F

4

G 4

7

5

H 3

6

Figure 3.2: Five graphs illustrating some important concepts. (i): the leftmost shows
an undirected graph with 7 nodes and 7 edges. (ii): the secondgraph is a complete
graph with four nodes, often called K4. (iii): a directed cyclic graph. (iv): a directed
acyclic graph (DAG), this is also one of many possible trees of (iii). (v): the rightmost
graph has weights on its edges. A minimal (cheapest) spanning tree is indicated with
full edges.

3.6 What is a MeSH term?

The abstracts one might download using PubMed are often provided with additional
information such as MeSH terms. MeSH (Medical Subject Headings) is a controlled
vocabulary providing consistent terminology for conceptscovered by the database.

In MeSH there are many DAGs, each corresponds to a general concept. The first
three DAGs are Anatomy (A), Organisms (B) and Diseases (C). There is a total of 15
such main DAGs. In general the child of a node in these DAGs hasa “is-a” or a “part-
of” relation to its parents. As an example the first three subDAGs under Anatomy are
Body Regions (A01), Musculoskeletal System (A02) and Digestive System (A03).

Each node in MeSH could be considered to be a MeSH term since they are words.
Each node may have parents and children. A fix MeSH term may also appear in many
DAGs: The MeSH term Mouth, for example, appears in three subDAGs of the DAG A
(anatomy): Body Regions (A01), Digestive System (A03) and Stomatognathic System
(A14). In Body Regions the node Mouth is a child to Face, grandchild to Head and has
the child Lip. In the other subDAGs Mouth has other parents and other children. In
addition to this a node may also have additional informationnot used in this thesis. For
more details of and to download MeSH: www.nlm.nih.gov/mesh/ .

In this thesis we have flattened MeSH into one big DAG where a certain term
is considered to be one node and thus has all possible parentsand also all possible
children. By doing this the selection of children and parents of a term was simplified.
An example of a subDAG of this big DAG is displayed in figure 3.3.

3.7 What is a gene network?

There is no such thing as direct communication between genes. So a valid question is
“why create gene nets if there are none?”. A gene net is a simplification and to motivate
it a bit of background is needed: Life as we know it is built up by multi- oligo- or
monocellular organisms. In cells information is stored in DNA. Some DNA, genes,
are expressed and transformed into RNA and later much of the RNA is translated into
proteins. We also know that much RNA is part of proteins such as ribosomes and that
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nose

more... nasal_mucosa nasal_septumturbinates

olfactory_mucosa vomeronasal_organ

goblet_cells olfactory_receptor_neurons

Figure 3.3: The subDAG of nose from MeSH. Please notice that some nodes have
multiple parents and that a child often has a “is-a” or “part-of” relation to its parent(s).
The MeSH term nose also has more children than displayed, indicated with a “more. . . ”
node. The parents of nose are not displayed.

proteins can interact with proteins, RNA and also with genes. A protein that affects
the expression of a gene is often referred to as a transcription factor (TF). There is
also evidence of RNA interactions with genes. But: genes do not interact directly with
other genes. The approximation - that genes interact with other genes - is however not
nonsense: there is often an injective relation between a gene and its gene product. If
for example a gene codes for a TF, this TF will bind to another gene and regulate its
activity. In this case we make an abstraction: we eliminate the TF in between the genes
and say that the genes have a biologically relevant link between them. Sometimes this
link is interpreted as a directed edge in a gene net, but in this thesis the direction is
ignored. This way of interpreting how a gene network could berelevant is explained in
figure 3.4.

There are many different types of nets including genes. Below is one interpretation
and classification of them:

Gene nets, is a general class of gene nets where any set of genes may have connec-
tions.

Gene-protein nets, is a class of nets where a directed edge between a gene and a
protein could mean that the gene is expressed as the protein and an arrow from
a protein to a gene could mean that the protein regulates the expression of the
gene.

A TF net can be a net with only genes and where an arrow from a gene to another
means that the first gene encodes a TF that regulates the activity of the second
gene. In these kinds of nets a loop would mean that the gene regulates itself.

Cooccurrence netsinclude the nets generated in this thesis. An edge between two
genes mean that they have both occurred in, for example, the same abstract. The
weight of the edge is interpreted as the number of times the pair has cooccurred.
This kind of net is believed to be biologically relevant.
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GG2

GGG1

R1

G2

P21

G3

R3

GG1

P12

R21

GGG3

R22

GGG2

P11

GG3

P3P22

G1

Figure 3.4: In cells genes (circles in the figure) are expressed into RNA (squares in
the figure) - illustrated by a directed arrow from the gene to the RNA. Some RNA is
translated into proteins (triangles in the figure) - illustrated by a directed arrow from
RNA to protein. Other RNA is however functional in differentways and may affect
genes, proteins or other RNA - again illustrated with a directed arrow. The uppermost
figure is an illustration of this. The middle figure here couldbe considered a projection
of the upper figure into the gene domain, here GGn correspondsto Gn for n= 1,2,3.
We can see that every path from a gene to another gene results in a directed arrow in
this domain. Notice that there are loops for GG2 and GG3. The lower figure is another
projection of the uppermost figure, here GGGn corresponds toGn or GGn for n= 1,2,3,
all loops are removed and the information of “direction” in the edges are lost. This is
the kind of nets one would find from the kind of text mining donein this thesis. (Please
note that the interactions among proteins is not displayed in this figure.)
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gene description
agtr1 angiotensin ii receptor, type 1.
agtr2 angiotensin ii receptor, type 2.
apoa1 apolipoprotein a-i.
apoe apolipoprotein e
cd36 cd36 antigen (collagen type i receptor, thrombospondin receptor).
ccr2 chemokine (c-c motif) receptor 2.
csf1r colony stimulating factor 1 receptor, . . .
icam1 intercellular adhesion molecule 1 (cd54), . . .
ifngamma interferon, gamma
mcp membrane cofactor protein (cd46, . . . antigen).
mcp1 microcephaly, primary autosomal recessive 1
mmp9 matrix metalloproteinase 9 (gelatinase b, . . . )
nfkb1 nuclear factor of kappa light polypeptide. . . (p105)
pon1 paraoxonase 1.
sele selectin e (endothelial adhesion molecule 1).
selp selectin p (granule membrane protein 140kda, antigen cd62).
sra1 steroid receptor rna activator 1.
tgfb1 transforming growth factor, beta 1 (camurati-engelmann disease).
tgfb2 transforming growth factor, beta 2.
tnf tumor necrosis factor (tnf superfamily, member 2).
tnfrsf5 tumor necrosis factor receptor superfamily, member 5

(under the synonyms cd40 and cd154.)
vcam1 vascular cell adhesion molecule 1.
vla4 very lateactivation antigen4

(vla4 is not included in the lists from HGNC)

Table 3.2: A list of genes that appear to have a larger relevance to atheroscle-
rosis than random. This list was generated by reading the reviews [Hansson,
Humphries and Morgan, Libby, Lusis] “by hand” and selectingall gene names that
occur in at least two of them.

One could (and have) of course also construct protein-protein nets, metabolite-
enzyme nets and so on.

3.8 What genes do we expect in atherosclerosis?

The reviews [Hansson, Humphries and Morgan, Libby, Lusis] were “read by hand”.
Genes occurring in at least two of them are displayed in table3.2. These genes are
considered to be of more than random relevance.

3.9 What is an urn?

The statisticians best friend is the urn [Blom]. In it we can put balls of different colors.
If we draw a number of balls at random there is a well defined number of balls of a
particular color we would expect and the variance of this number is also well defined.

Let us for example put blue and green balls in the urn and assume that the fraction



12 Chapter 3. Tutorial

of blue balls in the urn is p and the fraction of green balls is q(with p + q = 1). If the
total number of balls is M and we draw m balls at random the stochastic variable X(m)
with the meaning “how many blue balls do we get if we draw m balls from the urn”
has the expected value E(X)= mp and the variance V(X)= M−m

M+1 mpq. (The variance
is the standard deviation squared.) X has the well known hypergeometric distribution.

Let us imagine an urn with 300 balls where 150 of them are blue.If we draw 200 at
random from the urn we would expect np= 200· 150

300 = 100 blue balls and a variance
of 16.61 so the standard deviation is thus 4.07. We call the scenario where we find as
many blue balls as expected, the null hypothesis, or H0 for short.

If we have a system somehow selecting the balls from the urn, and from 200 drawn
balls find 75 blue ones we can calculate the distance from H0 in standard deviations as
X-E√

V
. In this case we are−25√

16.61
≈ −6.13 standard deviations from the null hypothesis.

One often say that within an interval of plus/minus two standard deviations of the
expected value 95% of the probability is distributed for thenormal distribution. So this
result is clearly lower than random.

If we instead consider the scenario of an urn with 3 million balls in which we still
have 150 blue ones we find that E≈ 0.01 and

√
V ≈ 0.1. So if we draw 200 balls and

find 75 blue ones the distance from H0 is 75−0.01
0.1 ≈ 750 standard deviations. We are

now clearly doing something better than random.

3.10 What is precision, recall and f-score?

It is often practical to count how many true or false positives and negatives a (new)
model has compared to another (old and “true”) model. A true positive, tp, is an item
that is present (or true) in both models; a false positive, fp, is an item the new model
proposes as present but that we know (by looking at the true model) is false; a true
negative is an item that is false in both systems and a false negative is an item that
should be present but that is not. Precision, recall and f-score use tp, fp, tn and fn to
compute a number between zero and one (in the rest of this thesis we often display mF
for milli F-score) where a number close to one indicates a match between the models.

Precision (P) has the definition: P= tp
tp+fp , with the intuitive meaning “how much of

what I say is true is true”.

Recall (R) has the definition: R= tp
tp+fn , with the intuitive meaning “how much of

the truth do I find”.

F-Score (F) is a kind of average of P and R: F= 2 PR
P+R =

tp
tp+fp+fn .

For more about P, R and F consult for example [Shatkay and Feldman]. As an
example we can consider the two following scenarios: First let us imagine tthat we
have a system of 300 documents and of these 150 that deals withthe gene “gremlin”,
analogous to the urn in the previous section. If we apply a search engine giving us 200
documents out of which 75 deals with the gene we get: P= 75

200 = 0.375, R= 75
150 =

0.5, and F= 2·0.375·0.5
0.375+0.5 = 0.42. Now, if we consider a similar system but instead of

having 300 documents we have 3 million documents. Let us alsoassume that there are
still 150 documents dealing with the gene “gremlin”. If a scan for the gene “gremlin”
gave us the same 200 documents as above P, R and F would be the same.

Compared to the urn in the previous section there is an interesting difference here,
the urn rewards something that is better than random but P, R and F does not. But on
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the other hand P still tell us us the fraction of of what we havefound that is true and R
still tell us how much of the truth we have found.
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McCoy: Shouldn’t you be working on your time
warp calculations, Mr Spock?
Spock: I am. (Resumes staring into space)

Star Trek 4
Methods

“AUTOMATED SYSTEM” is a concept that occurs very often in this thesis since
one of the goals of this thesis is to create one. The concept “automated

system” is very vague, almost generic, and we have chosen this phrase
since it implies nothing more than it should. Of course an “automated system” could
be implemented in a number of different ways and in this chapter we explain some of
the details of the implementation used, many details are left out and the reader may
consult the tutorial and the appendix for them.

4.1 The workflow

Abstracts were manually downloaded in big files, with tens orhundreds of thousands of
entries per file, and stored as plain text. A program implemented in the free program-
ming language Python (www.python.org) was used to extract information like title,
MeSH terms and so on from the abstracts. The program then stored this information
in a MySQL database (www.mysql.com). An example of python code is illustrated in
figure 4.1. In this example we illustrate that the internal representation of the nets are
hash tables - known for fast accessing - where an edge is a sorted tuple, for example
the edge between mmp8 and apoe is thetuple (apoe,mmp8) since apoe is “smaller”
than mmp8 alphabetically. This also clearly shows the syntactic superiority of python,
it is really easy to read and understand the code! Figure 4.2 show an example of an
interaction with MySQL when done “by hand”. This was generally not done since a
textual interface was created in python that communicated with both the user and the
MySQL database. Figure 4.3 demonstrates how the interface looks and indicates some
of the features included in the program.

Some of the more important algorithms are displayed in the appendix and some
improvements are suggested. There is also an example of whattype of output we can
get in the end of this chapter.

4.2 The cardiovascular disease case

From PubMed we downloaded about 2 million abstracts. The abstracts were selected
using a simple search for “cardiovascular disease” and related subjects in the standard
search field in PubMed. The abstracts were initially stored as plain text in the semi-
structured format in PubMed called “medline” as described in figure 3.1. The fields
that were actually used was only the pmid, the title, the textin the abstract the MeSH
terms.

Strandberg, 2005, On text mining to identify gene networks.. . 15
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def random_network(n,e):
# function creating a random network (very similar to ER)
# adding e edges

if not ( (e < n*(n-1)/2) and (e > 0) and (n > 1) ):
return {}

net = {}

while e > 0:
a = randint(1,n)
b = randint(1,n)
while b == a:

b = randint(1,n)

(a,b) = (min(a,b),max(b,a))

if not net.has_key((a,b)):
net[(a,b)] = 1
e -= 1

return net

Figure 4.1: An example of python code. This particular function creates a random net
with n nodes and e edges. If we try to add too many edges the program returns an
empty net. The variables a and b correspond to the numbers of the edge (a,b) we try to
add. The functionrandint(x,y)returns a random integer between x and y. This program
is particularly suboptimal for very dense nets.

mysql> SELECT hgncid, gene, longname
-> FROM gene
-> WHERE longname like "beta%";

+--------+--------+------------------------------------------------------------+
| hgncid | gene | longname |
+--------+--------+------------------------------------------------------------+
| 914 | b2m | beta2microglobulin |
| 915 | b2mr | beta2microglobulin regulator |
| 921 | b3gat1 | beta1,3glucuronyltransferase 1 (glucuronosyltransferase p) |
| 922 | b3gat2 | beta1,3glucuronyltransferase 2 (glucuronosyltransferase s) |
| 923 | b3gat3 | beta1,3glucuronyltransferase 3 (glucuronosyltransferase i) |
| 933 | bace1 | betasite appcleaving enzyme 1 |
| 934 | bace2 | betasite appcleaving enzyme 2 |
| 1047 | bhmt | betainehomocysteine methyltransferase |
| 1048 | bhmt2 | betainehomocysteine methyltransferase 2 |
| 1121 | btc | betacellulin |
| 1144 | btrc | betatransducin repeat containing |
| 13815 | bcmo1 | betacarotene 15,15monooxygenase 1 |
| 18503 | bcdo2 | betacarotene dioxygenase 2 |
+--------+--------+------------------------------------------------------------+
13 rows in set (0.06 sec)

Figure 4.2: An example of SQL code demonstrating how SQL can work and what kind
of output we get when using it “by hand”.
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help - print a helptext.

mesh - get (nothing but) a list of mesh terms.
addm - add a mesh term (and its offspring) to the search-set.
delm - set mesh term (with offspring) not to be in set-definition.
kids - display selected mesh terms and their kids/offspring.
abs - count abstracts given the mesh terms.

clear - delete all lists of mesh terms and start over.

doit - analyse the abstracts with selected mesh terms, producing....
- raw output in html-format
- minimal spanning tree using mesh terms as observations
- minimal spanning tree using genes as observations
- plot of the hierarchical cluster of mesh terms
- plot of the hierarchical cluster of genes
- plot of in/out-degrees of nodes
- a data-file for generating a Bayesian network
- more ?

exit - leave the program.

* please feed me: doit
Analysis-options...

0 - default (human with prints)
1 - turn all prints off and use human genes
2 - yeast
3 - yeast without prints

What do you want? 0
- the timestamp for this scan is 2005jan17_135416,

2531 abstracts connected to the term: denmark
308 abstracts connected to the term: scandinavia
4780 abstracts connected to the term: sweden

- potentially 7619 unique abstracts, total of 7415 unique ones.

...

- completed: 2005jan17_140014, browse it in mozilla? <y|n>

Figure 4.3: Selected output from the interface of the program implemented. Here we
have selected the MeSH term “scandinavia” and stopped the MeSH term “norway” and
its child “svalbard” (not shown). We can also see that each scan got a time stamp as
unique id. The scan took about 6 minutes and included 7415 abstracts.
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Previous research has noted great problems with case variation for gene names so
all abstracts were filtered into lower case only - all upper case letters were lowered.
In the same spirit all hyphens or minus signs were deleted. One might argue that
conflicts must arise from this and of course they do: the genes“trav11” and “trav1-1”
for example were no longer “different” genes. This problem and some other problems
were however ignored - all conflicting gene names were given the status “conflict” and
were not used.

To find as many occurrences of genes as possible we used synonym lists. One
big synonym list including for example old and withdrawn synonyms comes from
[HGNC]. We used this list and considered an occurrence of anysynonym to be an
occurance of the “best” synonym (in the manner proposed by HGNC) of this synonym.

A large problem arises from research where authors are usingdifferent synonyms
for the same gene. We would like to illustrate this problem with an example: the gene
often referred to as “cd36” has the five synonyms “gp4”, “gpiv”, “scarb3”, “fat” and
“gp3b”. Out of these six names for the same gene at least one, “fat”, is also a common
word for something not being a gene. To filter these bad words out in a automated
manner we used the dictionary from open office (www.openoffice.org) as a stop list.
All the gene synonyms or gene names that are also words were filtered to avoid false
positives. Some of these filtered genes are: “beta”, “grail”, “for”, “nude”, “cryptic”,
“gremlin” and “dance”.

Another problem is for example the gene sialoadhesin, a macrophage adhesion
molecule, that has the synonym “sn”. The word “sn” is also theshort form of tin,
element 50 in the periodic system. To avoid this kind of confusion we use the con-
straint on synonyms and gene names that they had to be at leastthree characters long,
thus ignoring all shorter synonyms. Fortunately most geneswith short synonyms also
had longer ones: sialoadhesin, for example, has the longer synonyms “siglec1” and
“cd169”.

Another set of bad gene names ignored was names without any letter such as the
synonym “16.2” for immunoglobulin lambdalike polypeptide2. Fortunately this gene
also has the names “igll2” and “flambda1”.

There is of course the risk of a naming conflict - polysemy. Names like “beta3”,
that is a synonym of the genes “eef1b3” (eukaryotic translation elongation factor 1 beta
3) and “bhlhb5” (basic helixloophelix domain containing, class b, 5), had to be deleted
along with all other cases of polysemy. Due to the elimination of hyphens this category
probably grew a bit.

We feel obliged to warn for problematic gene names that were not rejected but
that might be unsuitable for the scientific community. Nameslike “smurf1” for “smad
specific e3 ubiquitin protein ligase 1”, should be fought, but since there is no trivial
way to make an automated system classing genes as “silly” or not these genes were
unfortunately included. The groups of problem and how many names that belong to
each group is described in table 4.1.

As briefly mentioned, the abstract meta-information in formof MeSH terms were
stored in the database. We used these MeSH terms to select a portion of the abstracts by
selecting a set of MeSH terms and if an abstract has this MeSH term, we included the
abstract in the scan. Each MeSH term was also considered to “include” all its offspring
(child-terms and grandchild-terms and so on) with the option of turning branches off.
So if we were to select the MeSH term heart we would get all 23 offspring terms.1 The

1The 23 terms are aortic valve, atrial appendage, atrioventricular node, bundle of his, chordae tendineae,
ductus arteriosus, endocardium, fetal heart, heart, heartatria, heart conduction system, heart septum, heart



4.2. The cardiovascular disease case 19

status entries example
nochar 7 47.11 - killer cell immunoglobulinlike receptor. ..
short 228 aa - atrophia areata, peripapillary chorioretinal degeneration
indict 555 pigs - phosphatidylinositol glycan, class s
conflict 1606 pit1 - solute carrier family 20. . . or pou domain, class 1. . .
ok 41725 apoe - apolipoprotein e

Table 4.1: A list of the status of the synonyms used in this thesis. About 40000 syn-
onyms were downloaded from [HGNC] and classed as described above. Most were fine
(ok) and used in the search for cooccurrences. Synonyms without any letter (nochar)
were not trusted since any numerical result might be confused for a gene. Some were
considered too short (short) and was not included in any search. If a synonym occured
in a dictionary (indict) it was not trusted nor was cases of polysemy (conflict).

c3ado

vcam1 icam1

gene_03

gene_02
gene_04

gene_01

Figure 4.4: The full lines show what we would get from a scan ofonly the abstract in
figure 3.1, please note that the algorithm would not find apoe since it is not a free word.
The dotted lines indicate a possible net we could have found if we would scan more
genes.

union of the abstracts linked to by the set of MeSH terms wouldthen be used for a
scan. We found 239000 pointers to abstracts and 177000 unique abstracts in this heart
example. In these abstracts we now look for cooccurrences (as defined in the tutorial).
In figure 4.4 we can see the gene network we might get if we scan only one or a few
abstracts.

It is also convenient to use the same representation as one might use to describe
gene expression matrices, as described in table 4.2. In the data set described by table
4.2 there are at least three cooccurrences in abstract1: gene1-gene3, gene1-geneN1 and
gene3-geneN1.

There is also another way of replicating a gene expression matrix: instead of using
one abstract per row we collapsed the abstracts referred to by a certain MeSH term so
that there is a MeSH term per row instead. See table 4.2 for an illustration.

As the title of this thesis suggests the most important output from this thesis is the

valves, heart ventricles, mitral valve, myocardium, papillary muscles, pericardium, pulmonary valve, purk-
inje fibers, sinoatrial node, tricuspid valve and truncus arteriosus.
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gene1 gene2 gene3 gene4. . . geneN1
abstract1 1 0 1 0 . . . 1
abstract2 0 0 1 0 . . . 0

...
...

...
...

...
. . .

...
abstractN2 0 0 0 0 . . . 0

MeSH1 MeSH2 MeSH3 MeSH4 . . . MeSHN3

abstract1 0 0 1 1 . . . 1
abstract2 1 1 1 0 . . . 0

...
...

...
...

...
. . .

...
abstractN2 0 0 1 1 . . . 1

gene1 gene2 gene3 gene4. . . geneN1
MeSH1 321 15 5 0 . . . 1
MeSH2 1065 19 0 1 . . . 1

...
...

...
...

...
. . .

...
MeSHN3 125 20 1 0 . . . 0

Table 4.2: An illustration of how an abstract to gene matrix (upper), how an abstract
to MeSH (middle) and how a MeSH to gene matrix (lower) could look. In the abstract
to gene matrix a 1 in position (i,j) is interpreted as “abstracti contains genej”. A 1 in
position (i,j) in the abstract to MeSH matrix has almost the same meaning as in the
abstract to gene matrix: “abstracti is tagged with the MeSH term MeSHj”. These kind
of matrices are typically very sparse and it is often a good idea to store only the nonzero
elements. By a combination of the two upper matrices the lower is produced. In the
MeSH to gene matrix a n in position (i,j) is interpreted as “out of all abstracts with the
MeSH term MeSHi there are n dealing with the gene genej”.
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gene networks distilled from the abstract to gene matrix fora given abstract set. This
gene network is believed to reflect the function described inthe abstracts. If we were
to use the MeSH term “heart” and all of its offspring we would hopefully get a gene
net describing important genes functioning in the heart andheart-related diseases.

Of course, many things could be done with the “abstract to gene” matrix, among
other things hit lists. In the hit list each gene got a score corresponding to how many
abstracts it cooccurred in.

4.3 The yeast case

As for the cardiovascular case, abstracts were downloaded from PubMed. Now two
sets of abstracts were downloaded; one set intended to target “cell cycle” and abstracts
were selected with keywords like “cell cycle”; a second set was intended to target “sac-
charomyces cerevisiae” where abstracts were selected by using keywords like “yeast”.
The two sets contained about 60000 and 220000 abstracts.

Gene and synonym lists were found from [SGD] with some additional synonyms
from [Euroscarf]. The abstracts and synonym lists were treated in the same way as in
the cardiovascular case with the exception that MeSH terms were not used to select
subsets, instead the two cases were considered to be the onlytwo possibilities. There
was a large overlap of abstracts, half of the cooccurrence containing abstracts for the
cell cycle case were also abstracts found in the yeast case.

For yeast the only output considered was the gene networks. As for the cardio-
vascular case, an edge had a label corresponding to the number of abstracts the nodes
sharing it cooccurred in.

4.4 Example of a scan using the MeSH term foam cells

Via the interface implemented it is easy to select MeSH termsto use for a scan. One
should note however that the results are always heavily biased towards cardiovascular
disease due to the nature of our selection of abstracts.

In this example we selected the MeSH term “foam cells”, a MeSHterm without
children connected to 2467 abstracts. The raw output is in html, where one easily can
click on genes to see with which other genes it is connected. There are two hit lists:
the strongest cooccurrences (table 4.3) and and the most cooccurring genes (table 4.4).
Small extra analyses are also conducted, such as the generation of a link distribution
plot in figure 4.5. The main result of this example is shown in figure 4.6 where the net
is shown.
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Figure 4.5: A link distribution plot for a scan using the MeSHterm foam cells using
almost 2500 abstracts. One can almost see a straight line (see next chapter).
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Figure 4.6: Having a cutoff at one (motivated in the next chapter) produces this net
with about 69 genes and 109 edges. We get the indication that the following genes are
important: wwox, cd68, nr4a2, eef1b3, cd36 and apoe, since they are hub-like.
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strength gene gene strength gene gene
14 celp wwox 5 cd36 celp
14 acad proc 5 acat1 apoe
11 nr4a2 wwox 5 lrp1 nr4a2
9 has1 wwox 5 casp14 eef1b3
8 casp14 wwox 5 ptgs1 ptgs2
8 eef1b3 wwox 4 celp has1
8 cd36 wwox 4 abca1 apoe
8 cd36 sra1 4 celp eef1b3
7 cd4 cd8a 4 mmp2 mmp9
6 lrp1 wwox 4 abca1 cd36
6 celp nr4a2 4 casp14 celp
5 icam1 vcam1

Table 4.3: Top cooccurrences for a scan of foam cells.

strength gene description
33 cd36 cd36 antigen (collagen type i receptor, thrombospondin. . .
29 wwox ww domain containing oxidoreductase.
26 apoe apolipoprotein e.
23 cd68 cd68 antigen.
19 acat1 acetyl-coenzyme a acetyltransferase 1 . . .
16 abca1 atp-binding cassette, sub-family a (abc1), member1.
16 celp carboxyl ester lipase pseudogene.
15 proc protein c (inactivator of coagulation factors va andviiia).
15 acad entry withdrawn.
15 nr4a2 nuclear receptor subfamily 4, group a, member 2.
13 vws van der woude syndrome.
11 has1 hyaluronan synthase 1.
10 ldlr low density lipoprotein receptor. . .
10 icam1 intercellular adhesion molecule 1 (cd54). . .

Table 4.4: Top coccurring genes after a scan of foam cells.
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If you’re gonna compare a Hanzo sword, you com-
pare it to every sword ever made. . .

Kill Bill vol. 2.

5
Validation and results

JUST AS IN MANY TV-SHOWSfor children, such as “Sesame street” or “Fem my-
ror är fler än fyra elefanter”1, where two funny persons compare two or more items,
there are many ways to compare graphs. One could almost say that the scientific

community have not taken this issue seriously and with some kind of arbitrary hand-
waving arguments use the validation method that suits them best. Forgraphsthere
are also many ways to validate if it is a good or bad model of “the truth”. But we are
convinced that the best way to do this must be to compare agraphdescribing a sys-
tem to anothergraphdescribing the same system. If the results are more similar than
one could expect from random we have a reason to trust the new results, or at least to
assume that the new results model the same thing the old results model.

This chapter will begin with a short discussion of the link distribution of the nets.
Then three sections discussing pairwise comparisons of graphs using different methods
will follow. The third of these is new and has a great potential. All of these methods
are used under the assumption that overlapping edges is the most important feature of
the graphs.

A section investigating the use of a possible cutoff of the edges is included. We
also compare lists of genes generated with different methods for the atherosclerosis
case where there are no available nets.

5.1 Link distribution

A method used to characterize graphs is to look at their link distribution. The link
distribution of a graph is a figure showing the number of nodeshaving a certain degree.
Figure 5.1 is an example of this and shows a few examples. These plots are often drawn
in log-log-scale since there, for many kinds of graphs, is anappearance of a straight
line in this scale. This implies that the number of nodes having a certain degree is
exponentially decreasing for increasing degrees. Many naturally occurring nets, and
nets created by humanity, like food webs, the internet, metabolic nets and cooccurrence
nets have this characteristic also known as a power law. See for example [Barabási] for
a comprehensive discussion of this topic. We would of courseexpect the nets generated
in this thesis to have this property. In an ER network (as described in the tutorial) this
property is absent.

Gene networks generated in thesis followed this power law characteristic and had
a slope of about -1.5 in log-log-scale, see figure 5.1.

1See for example http://www.svt.se/myror/myror2/container.html where one can compare: a snail, a tur-
tle, an ostrich and a centipede.

Strandberg, 2005, On text mining to identify gene networks.. . 25
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Figure 5.1: Link distribution for two kinds of graphs. The upper figure shows many
link distribution scatterplots of a text mined net from abstracts dealing with “cell cycle”
for yeast with cutoffs at 0, 1, 3, 5 and 10. Edges weaker than the cutoff are removed.
One can suspect that the deviation from a straight line for a cutoff at zero could appear
as an effect of unwanted connections among nodes. The slopeswere -1.38, -1.45, -
1.47, -1.42 and -1.50 respectively. The lower figure displays the link distribution from
a net starting as a tree with 0, 128, 256, 512, 1024 and 2048 randomly added edges.
The distribution tends to move towards less leaves and a peakat some non-zero mean.
Each curve is a mean of ten networks. These curves do not resemble straight lines.
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5.2 Pairwise comparisons of graphs 1: Overlap

The first method used to perform pairwise comparisons of graphs in this thesis is the
simple way to just compute the number of overlapping edges, the true positives. An
edge counts as overlapping if there, in both nets, is an edge between the same pair of
genes. Here we do not consider the weights of the edges, they are all equally important.
The uppermost part of table 5.1 show the number of overlapping edges for all possible
pairs of nets using the cell cycle and Saccaromyces Cerevisae net from this thesis (as
explained earlier), Luscombes cell cycle net, Lees net, Guelzims net, and the Insuk
Lee. Insuk Lee has merged nets from different sources to get anet and Luscombe,
Lee and Guelzim has used microbiological data to get their nets. It is difficult to say
anything from these numbers, for example: our yeast net has about 560 overlapping
edges when compared to the Guelzim net and Luscombes cell cycle net has about 520
overlapping edges when compared to the Lee net. Does this mean that our is a better
model of the Guelzim net than the Luscombe net is a model of theLee net? Well,
one have to understand that our yeast net contains 41000 edges, Guelzims about 900,
Luscombes about 800 and Lees net has about 4300 edges. In almost any method used
to compare nets the number of overlapping edges is important. But we urge the reader
to not interpret these numbers, we will let the reader see what for example P, R and F
does with them.

5.3 Pairwise comparisons of graphs 2: P, R and F.

Instead of looking at just overlap, we might want to get a score to be able to say if
the overlap is “good” and “bad”. F is displayed in table 5.1 and we remember that the
rule of thumb is that if P and R (and thus F) are both better than0.6 we have a nice
result. Compared to this our results are awful. A paradox is that this does not imply
that our results are worse than random, or even bad, in fact weshall see that the results
are actually pretty good.

If we look at F, one can see that a bigger number of overlappingedges does not
have to mean a better F. In table 5.1 one can for example see that our yeast net ver-
sus Guelzims net has a higher overlap but a lower F (overlap=558 and mF=26) than
the Luscombes cell cycle net versus Lees net has (overlap=522 and mF=202). This
example shows that better overlap does not have to mean better F.

5.4 Pairwise comparisons of graphs 3: the urn approx-
imation

We must now remind the reader of the urn: If we have an urn with Mballs, with the
fraction p of them being blue, the fraction q of them being green and p+q=1 we can
define the stochastic variable X(m) as the number of blue balls drawn from the urn if
we draw m balls at random without replacing any of them. The expected number of
blue balls is E(X)=mp with the variance V(X)=M−m

M−1 mpq.
First we will now consider the case where we compare twotrees(GA and GB) with

the same nodeset (N) having n nodes. As an approximation we will use the metaphor
of an urn, in this urn we will put as many blue balls as there areedges in GA thus as
many as there are nodes in N minus one since we are dealing withtrees. We also add a
number of green balls - one for each possible edge that is not present in GA. We now
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(i) Overlap S CC S SC L CC Lee Gue I Lee
Strandberg CC 15821 13845 103 100 158 2595
Strandberg SC 13845 41366 174 221 558 5228
Luscombe CC 103 174 807 522 142 48

Lee 100 221 522 4356 119 67
Guelzim 158 558 142 119 904 172

I Lee 2595 5228 48 67 172 54700
S CC with cutoff 4796 4181 67 52 95 1556
S SC with cutoff 4181 13439 112 130 393 3673

(ii) mF S CC S SC L CC Lee Gue I Lee
Strandberg CC 1000 484 12 9 18 73
Strandberg SC 484 1000 8 9 26 108
Luscombe CC 12 8 1000 202 165 1

Lee 9 9 202 1000 45 2
Guelzim 18 26 165 45 1000 6

I Lee 73 108 1 2 6 1000
S CC with cutoff 1000 458 23 11 33 52
S SC with cutoff 458 1000 15 14 54 107

(iii) Distance from H0 S CC S SC L CC Lee Gue I Lee
Strandberg CC 4241 2292 121 49 176 367
Strandberg SC 2292 4241 126 66 386 456
Luscombe CC 121 126 4241 1180 704 29

Lee 49 66 1180 4241 253 14
Guelzim 176 386 704 253 4241 102

I Lee 367 456 29 14 102 4241
S CC with cutoff 4241 2207 143 47 193 404
S SC with cutoff 2207 4241 143 70 477 569

Table 5.1: The six nets in these tables are compared to each other where each row is
considered to be a model of each column. The three tables are displaying different
validation techniques: (i): the number of overlapping edges in pairwise comparisons
of graphs. In the nets all loops were removed and all edges areconsidered to be undi-
rected. (ii): milli F-score (mF) for pairwise comparison ofnets. (iii): The distance in
sigmas from the null hypothesis. At first it might seem that this score is the same thing
as F, but scaled, but this is however not true. The tables all have two additional lines
where we have written what happened when a cutoff at 1 was applied. Interesting ob-
servations from the two additional lines tables are the factthat the distance increases in
almost all cases when applying a cutoff, but that F does not seem to increase as clearly.
A conclusion is that it must be a sad day for F when we find something one hundred
standard deviations better than something else when F remains the same (compare our
yeast net with the I Lee net with and without a cutoff). The urnscore is generated under
the assumption that there is a total of 6000 genes in the yeastgenome.
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Figure 5.2: Random Overlap. The figure displays the mean number of overlapping
edges plus/minus one standard deviation from 200 pairwise comparisons of random
trees for various sizes. We are always close tomean ± sigma = 2±

√
2.

have as many balls in the urn as there are possible edges for N.We can think of each
blue ball as an edge in GA and each green ball as an edge that could have been in GA

but that is not there.
If we assume that the two trees are unrelated we could think ofthe second tree, GB,

as having edges drawn at random from the urn. This would correspond to drawing as
many balls from the urn as we have edges in EB. By calculating the number of blue
balls we could expect if this was a random event, E(X), we can compare this number to
how many blue balls we actually got: the number of overlapping edges. We know that
X has a hypergeometrical distribution since we do not returnany balls. Given what we
already know of this distribution we notice that the expected value E(X)=2n−1

n
and that

the variance V(X)=2(n−1)3(n−2)
(n2−n−2)n2 . We come to the remarkable conclusion that, for large

values of n, we expect an overlap of 2 edges and a variance of 2.(If this observation is
unnamed, we propose “Strandbergs number two”.)

As an illustration of this assumption we did 200 pairs of random trees with a fix
number of nodes and counted X, the overlapping edges, and sigma the standard devia-
tion. This procedure was repeated for trees with 10 to 2000 nodes, see figure 5.2, and
the mean value was very close to two no matter the number of nodes. The standard
deviation was also close to the square root of two. One could expect that the urn would
react in a different way when we compare two trees, since the trees have constraints.
One constraint is that once some of the edges are added to whatis to become the tree
some edges are prohibited since we do not allow loops. The urndoes not “feel” this
constraint but apparently it does not matter.

We have just seen that this urn approximation seems to be valid for random trees, let
us now assume that we are interested in a comparison of two networks. We can consider
the pair of nets to be a pair of random trees with n nodes, saturated with k and r extra
edges respectively. Still using the metaphor of the urn we now have(n− 1) + k blue
balls, n(n−1)

2 −(n−1)−k green balls and we draw(n−1)+ r balls at random from the
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10 100 1000 10000
100 simu 2.94± 1.59 3.86± 1.79 13.8± 3.20 114± 8.87
100 calc 2.91± 1.70 3.92± 1.97 14.0± 3.67 115± 8.82

Table 5.2: To a pair of trees with 250 nodes 100 edges was addedto one of them, to the
other 10, 100, 1000 or 10000 edges was added. This procedure was repeated 100 times
for each combination of extra edges and the mean overlap and standard deviation was
noted. In the row labelled “100 simu” the result from this simulation is noted in the
form mean± sigma. The row “100 calc” describes the expected overlap and standard
deviation we would get with the urn approximation. In 15 cases of 16 the analytical
mean fitted into a 95% confidence interval around the simulated value.

urn. We now expect E(X)= 2(n−1+k)(n−1+r)
n2 ≈ 2(n+k)(n+r)

n2 edges overlap for large

values of n and a variation of V(X)= 2(n−1+k)(n−1+r)
n2(n−1)2

(n2−3n+2−2k)(n2−3n+2−2r)
n2−n−2 ≈

2(n+k)(n+r)(n2−2k)(n2−2r)
n6 for large values of n. As an example we now consider the

expected overlap of two networks where we have three times asmany edges as we
have nodes (k= r = 2n), for example a yeast net with 6000 genes and 18000 edges:
for large n’s we would expect 18 edges overlap with a sigma of about 4.24. Here the
reader must understand that an overlap of 18 would give poorer and poorer F the more
we increase n.

Again we performed simulations to compare the urn-assumption with real net-
works. To 100 pairs of trees with 250 nodes, k edges were addedto one of them,
and r to the other one. We calculated the mean overlap and the variation. This was
repeated for values of k and r at 10, 100, 1000 and 10000. Around the simulated mean
a 95% confidence interval was made and in only one case the analytical mean ended
up outside, so if we were to use the null hypothesis “the methods are different” we
could not reject it. This does not have to mean that we have proven the validity of this
approximation, but we have not rejected it. Again simulations and calculations seem to
give pretty much the same results. As an example the simulation of the E- and sigma-
values and the analytical values are described in table 5.2 for k = 100 and r at 10, 100,
1000 and 10000.

So far we have looked at trees and quasi ER graphs. Let us now investigate what
happens if we focus on nets having a power law link distribution instead. It is not
as easy to simulate a net with fixed link distribution having awell defined number of
edges. So the nets used to do pairwise comparisons now had a well defined number
of nodes and a varying number of edges.2 Two sets of nets were made: the first set
“sizevar” had a varying number of nodes and about three timesas many edges as nodes.
The second set “degvar” had 250 nodes and a varying number of edges.

Results from a comparison of the sizevar trees compared to quasi ER graphs showed
that we are very close to the null hypothesis (between -0.35 and +0.04 sigmas from H0),
close enough to say that we do not have to modify the null hypothesis for these kinds of
comparisons. The graphs of each size were also compared internally (all possible pairs
of each size were compared) using the urn approximation. From these comparisons we
noted that the results were similar to what we got when comparing with random graphs
but that there is a slight tendency to find less information than what the null hypothesis
claims. As for the sizevar set the degvar set was also compared to quasi ER graphs

2All these nets wery created by Björn Brinne, thank you Björn.
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and compared internally, the results were similar to those for sizevar. As we hoped it is
thus no big difference in results when comparing quasi ER graphs with graphs having
preferential attachment.

We have seen pairwise comparisons of simulated nets of different classes. The
results are promising: (i) for quasi ER random graphs the overlap is very close to
what we would expect if we were to use this approximation. So close that we can
say without to much of doubt that the approximation is a validapproximation. (ii)
When we compare quasi ER random graphs with graphs having preferential attachment
we are also very close to the null hypothesis. (iii) When comparing pairs of graphs
having preferential attachment we are also pretty close to the null hypothesis but (iv)
there seems to be a slight tendency of this approximation to expect a little more than
simulations would expect us to find. Fortunately this will only suggest that if we find
something far from the nullhypothesis (on the positive side) we might actually have
done something more significant than we think.

Results from pairwise comparisons of some nets and the distance in sigmas from
the nullhypothesis are displayed in table 5.1. The distancefrom the nullhypothesis is
also studied in figure 5.3 as a function of cutoff, as described in the next section.

We are now ready to look at this score compared to overlap and F. Here we can
now for the first time (?) see that the low values of overlap, P,R and F sometimes
are in contrast to their intuitive interpretation: that a low value would mean that we
are close to doing things at random. We can see that or yeast net versus Guelzims net
(overlap=557 and mF=26) ends up 386 standard deviations from what we could expect
if the nets were unrelated. Luscombes cell cycle net versus Lees net (overlap=522
and mF=202) has a distance from the null hypothesis of 1180 standard deviations.
So we dare say that Luscombes cell cycle net and Lees net are “closer” than our net to
Guezims net. This is what we would have expected since the nets, in their construction,
are related. We might now tempted to say that “higher F means longer distance from
the null hypothesis”, but this is not generally true: a counter example is the cell cycle
and yeast nets compared to Luscombes cell cycle net, here thebest distance is not the
pair with the best F.

5.5 The cutoff

The strength of an edge in the text mining-graphs is the number of abstracts in which
the gene pair has cooccurred. It is not unreasonable to assume that the higher the score
the more relevant edge. One could argue and say that recent findings of the true gene
interactions are not specified in an abstract since they are often performed in such large
scale that the genelists have to be excluded from the paper. We will therefore not say
that a high score means “more relevant edge” in a biological sense.

The opposite seems to be true however: we seem to be able to interpret really low
scores as “less relevant edge” and there are two major motivations for this. The first
is illustrated in figure 5.1 where one can see that the cooccurrence graph seem to have
more of a power law characteristic for a non zero cutoff. Thiscould be interpreted as
follows: there are a number of false relations shortcuttingthe net and reconnecting the
true leaves and thus lowering the number of observed leaves.This is consistent with
results in [Jenssen et al] where a degree of false positives of 40% for edges of weight
one versus 29% for edges of weight five or more was noted.

The other motivation of the hypothesis that low scores imply“less relevant edge”
is shown in figure 5.3 where P, R, F and distance from the null hypothesis in sigmas
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Figure 5.3: Two plots showing the fraction of edges left, thefraction of the overlap, P,
R, F (normalized so that its maximal value is one) and distance in sigmas from the null
hypothesis (also normalized) as functions of the cutoff. Things of importance in these
plots are (i) the rapid decline in edges left and the not as rapid decline in the fraction of
overlap left for low values of the cutoff; (ii) the peak of thedistance in sigmas from the
null hypothesis for a cutoff at 1, 2, or 3; (iv) the peak of F when the cutoff is between
15 and 40 and (v) P and R are extremely poor (not normalized in the plots); (v) The
zig-zag-like pattern in both F and the distance in sigmas from H0 could be interpreted
as an effect from the low number of tp left: one tp more or less has a great impact.
These observations support the hypothesis that there is an important portion of fp for
cutoffs lower that 1, 2 or 3.

(among others) are plotted as a function of the cutoff. This figure shows that the dis-
tance from the null hypothesis in sigmas seems to have a peak for cutoffs around 1, 2
or 3, implying that there is a higher portion of fp in these weak edges. The same figure
illustrates that F seems to be particularly large for a cutoff somewhere between 15 and
40, an interval where many edges are gone. This could possibly imply that there is a
high degree of tp in this area. We therefore give the hint to the reader to use a cutoff
at 1 in this case. This is motivated by three things: (i) about60 to 70% of all edges
are deleted but only 20 to 30% of the overlap is lost and (ii) weare as far away from a
random event as possible. (iii) The straight line in the linkdistribution is clearer with a
cutoff than without.
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5.6 Comparing hit lists with hit lists

One of the more human readable forms of output are the hit lists. The hit lists generated
here are constructed by giving a gene a score that is equal to the number of times it
has cooccurred. We will in this section compare such a list, generated from a scan
of 66000 abstracts with a total of 1367 genes, with lists generated from reading the
reviews [Hansson, Humphries and Morgan, Libby, Lusis]. Each potential gene name
was added to a list, so there were four lists from the reviews with 10 to 52 genes, where
a mild filter had been applied. The union of the four lists was also generated (with 96
genes), and finally a list with the genes that occurred in at least two of the reviews. The
text mined list was also used to generate two more lists: one with the top 134 genes (the
top 10%), and another with the top 800 genes (genes with a score greater than one).
One final list was gathered from the additional material of [Seo et al]. This last list is
generated from gene expression experiments and contains 206 genes considered to be
connected with atherosclerosis (where at least one had a name that was filtered).

Each possible pair of lists was compared by counting the overlap and by computing
the distance from the null hypothesis in sigmas. Selected results are displayed in table
5.3. When we compared the lists some interesting results emerged. When the lists from
the reviews were compared to our lists, the top 10% list always scored the best. But
when compared to the list from [Seo et al] the best one was the full list. One possible
interpretation of this is that the genes that score best in our hit list are well studied
(and cooccur often) and are thus mentioned in the reviews whereas genes that are only
studied a bit might actually be more important than the reviews imply - or are not as
well understood and therefore not mentioned in the reviews.

So far, we have had a constraint of a perfect match, meaning that for example
two genes in the same family (for example mmp1 and mmp2) does not match unless
their numbers are correct (mmp1 does not match mmp2). To easethis constraint and
count mismatches within a family as a hit, all numbers in the gene names were turned
into a tilde (so that both mmp1 and mmp2 were both turned into mmp∼ and now
matched). Now there were 7600 “unique” names instead of 20000. Another interesting
observation when comparing the now filtered lists is that thescores now were worse
compared to the reviews but better compared to the list from gene expressiondata. A
possible interpretation is that the reviews actually have the correct number after all and
that the gene expression data does not.

A problem with this method is of course that genes differing in only a number
might not be family, and genes within a family might not be separated in notation with
just a number, like “apoe” and “apob”.

Out of the 72 genes that occurred in any review 18 were hit by the text mining
algorithm. The 54 genes that were not hit were examined “by hand”, and at least 29
of them should have been hit by the algorithm. At least 15 of the genes were not
found because of interpretation problems: when typing the genes from the reviews
these genes were translated “by hand” to raw text and often the genes were written in
the review without a definition of their abbreviation. It wasnot clear that for example
“β” was to be interpreted as “beta” whereas it might have been “b” in the database - or
the opposite. More problems are written in table 5.4.

The intersection of genes found from both text mining and in [Seo et al] is de-
scribed in table 5.5 and in 5.6.
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Strandberg Strandberg 2+ Strandberg 10%
[Humphries and Morgan] (10) 6.7 (6) 9.0 (6) 19 (5)
[Libby] (34) 5.2 (10) 7.6 (10) 14 (7)
[Hansson] (52) 4.6 (12) 7.0 (12) 13 (8)
[Lusis] (31) 4.2 (8) 6.2 (8) 15 (7)
Union (96) 8.3 (27) 12 (27) 22 (18)
Review 2+ (22) 3.8 (6) 5.6 (6) 15 (6)
[Seo et al] (205) 3.6 (27) 2.1 (14) 2.3 (4)
[Humphries and Morgan] (10) 4.2 (6) 5.8 (6) 12 (5)
[Libby] (28) 1.1 (6) 2.5 (6) 6.8 (5)
[Hansson] (36) 1.9 (9) 3.6 (9) 8.5 (5)
[Lusis] (27) 1.8 (7) 3.3 (7) 8.5 (7)
Union (72) 2.7 (18) 5.0 (18) 11 (6)
Review 2+ (19) 2.2 (6) 3.6 (6) 10 (13)
[Seo et al] (180) 6.2 (54) 5.9 (37) 4.8 (11)

Table 5.3: Some of the results originating from pairwise comparisons of lists. Each
row correspond to a list originating from reviews [Hansson,Humphries and Morgan,
Libby, Lusis], their union, the list of genes that occur in atleast two of the reviews
or from the additional material of [Seo et al]. The number of genes in each list is
displayed within (). The three rightmost columns corresponds to lists generated from a
scan of 66000 abstracts. In the upper half of the table no number filter is used, and in
the lower half all numbers are filtered. The number displayedis the distance from the
null hypothesis in sigmas and the absolute number of overlapping genes within (). The
number of genes in our lists are for the upper half 1367, 800 and 134; and for the lower
half 1073, 646 and 123. The reader should note that in both theupper and the lower
halves the best distance is achieved by the top 10% list in allcases but one: when the
lists are compared to a list originating from a gene expression experiment in [Seo et al]
where the full list gave the best result.
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Problem Names Example
Mea Culpa 15 eselektin
Greek or Roman 10 nfkappab and apoai
Family or antifamily 9 mmp and apob∼
Word 2 age
Short 1 nf
In the database 29 hsp∼

Table 5.4: The lists Review union and Strandberg full from table 5.3 were compared
and the genes from review union that was not found in Strandberg full were manu-
ally investigated. The table categorizes come problems to why they were not found
(one name may have more than one problem). The main problems were caused by us
when typing the genes from the reviews, “mea culpa”, typically these genes were used
without defining their abbreviation, or that we interpretedfor example “β” as “beta”
whereas it might have been “b” in the database - or the opposite. Another problem are
genes within a family separated with roman (i, ii, iii, and soon) or greek (alfa, beta,
and so on) letters or numbers, “greek or roman”. With “familyor antifamily” we class
genes that are unnumbered in the review but numbered in the database (family) or the
opposite (antifamily). Two genes were named as if they were words (“age” and “mig”)
and one was to short (“nf”). Of the 54 genes in the list about 29were in the database
and should have been found if they cooccurred in at least one abstract.

5.7 Validation and results: Recapitulation

The first section in this chapter dealt with the link distribution of the graphs. This
section showed us that there is a power law link distributionin the graphs and that this
is a little more obvious with a non zero cutoff. This is what wewould have expected
and what we hoped for.

The following three sections all dealt with overlapping edges since overlap, preci-
sion, recall, f-score and the urn approximation have this incommon. The section that
dealt with overlap is important since it shows us how little overlap there is. This was
also illustrated in the section dealing with P, R and F: we sawhow poor results we had
using these standard tools. But instead of falling into despair we wanted to know why
this was the case and how much overlap we would expect at random. By pure luck the
first thing we did was the simulation of overlapping trees - Strandbergs number two -
that is illustrated in figure 5.2. Of course we thought there was something wrong with
the algorithm doing the comparisons so, again by pure luck, we had to do it analytically
and found that we could not expect much overlap at random. Moreover we foundhow
little overlap one would expect.

Again, these three sections have at least one thing in common: the idea that when
comparing two graphs, you say that the graphs are more similar if they have more
overlapping edges. This is of course a very reasonable idea and also a very simple way
to measure similarity.

The sixth section of this chapter is especially important since it names the genes
we might expect to be relevant (or at least studied in connection to cardiovascular
disease). Comparing lists using absolute numbers is probably needed since we want to
know what genes that overlap and therefore how many. Using anurn here is needed to
illustrate that this is also very far from a random event.
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gene description
akr∼b∼ aldoketo reductase family∼ member b∼ (aldose reductase)
apoe apolipoprotein e
arhgap∼ rho gtpase activating protein∼
arhgef∼ rho/rac/cdc42 guanine nucleotide exchange factor (gef)∼

capg capping protein (actin filament), gelsolinlike
cbx∼ chromobox homolog∼
cdkn∼b cyclindependent kinase inhibitor∼b
cd∼ cd∼ antigen
chi∼l∼ chitinase∼like ∼
cxcr∼ chemokine (cxc motif) receptor∼
cxorf∼ chromosome x open reading frame∼
c∼orf∼ chromosome∼ open reading frame∼
enpp∼ ectonucleotide pyrophosphatase/phosphodiesterase∼

esd esterase d/formylglutathione hydrolase
fbln∼ fibulin∼
fbp∼ fructose1,6bisphosphatase∼
fcgr∼a fc fragment of igg, high/low affinity i/ii/iiia, receptor for (cd16/32/64)
fgfr∼ fibroblast growth factor receptor∼
gstt∼ glutathione stransferase theta∼
icam∼ intercellular adhesion molecule∼
ifi∼ interferoninduced protein∼ or interferon, alfa/gammainducible protein∼
il∼ra interleukin∼ receptor, a/alpha
irak∼ interleukin1 receptorassociated kinase∼
itgb∼ integrin, beta∼
kiaa∼ kiaa∼
lamb∼ laminin, beta∼
lta lymphotoxin alpha (tnf superfamily, member 1)

Table 5.5: First half of the genes found by text mining of 66000 abstracts that also
occur in [Seo et al]. Please note that the name c∼orf∼ corresponds to about has about
1200 different genes and that fcgr∼a can have high or low; i, ii or iii and is a receptor
for cd16, cd32 or cd64.
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gene description
mapk∼ mitogenactivated protein kinase∼
map∼ microtubuleassociated protein∼
mmp∼ matrix metalloproteinase∼
myh∼ myosin, heavy polypeptide∼
nr∼h∼ nuclear receptor subfamily∼, group h, member∼
olr∼ oxidised low density lipoprotein (lectinlike) receptor∼
plaur plasminogen activator, urokinase receptor
ppp∼r∼b protein phosphatase∼, regulatory (inhibitor) subunit∼a/b
psmb∼ proteasome (prosome, macropain) subunit, beta type,∼

ptpn∼ protein tyrosine phosphatase, nonreceptor type∼

rtn∼ reticulon∼
runx∼ runtrelated transcription factor∼
sca∼ spinocerebellar ataxia∼
sdc∼ syndecan∼
sds serine dehydratase
slc∼a∼ solute carrier family∼, member∼
sod∼ superoxide dismutase∼, soluble/mitochondrial/extracellular
spint∼ serine protease inhibitor, kunitz type∼
spp∼ secreted phosphoprotein∼
stat∼a signal transducer and activator of transcription∼a
stk∼ serine/threonine kinase∼
tbx∼ tbox∼
tlr∼ tolllike receptor∼
tnc tenascin c (hexabrachion)
tnfrsf∼b tumor necrosis factor receptor superfamily, member∼b
usp∼ ubiquitin specific protease∼
znf∼ zinc finger protein∼

Table 5.6: Second half of the genes found by text mining of 66000 abstracts that also
occur in [Seo et al]. Please note that the name slc∼a∼ corresponds to hundreds of
different genes and that sod∼ has one of soluble, mitochondrial or extracellular and
not all.
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Cogito cogito ergo cogito sum
(I think that I think,
therefore I think that I am.)

Ambrose Bierce, The Devil’s Dictionary 6
Summary, conclusion and discussion

AS THE TITLE OF THIS THESIS INDICATESthe goal of this thesis is to implement
an automated system doing text mining to find gene nets for cardiovascular

disease. In order to know if our nets are any good we have generated nets for
yeast and validated them against other yeast gene nets.

Throughout this thesis we have been heavily inspired by the project described in
[Jenssen et al] and when implementing the automated system that was to do text mining
we wanted to solve some of the problems mentioned in it. One main improvement
has to be the brutal treatment of gene and synonym names from the assumption that
scientists do not know how to spell genes. By forcing the abstracts to be completely
in lower case and by eliminating all minus signs we must have gotten rid of extremely
many problems. But, as stated, some problems were created: the most obvious one
is that different names might now be the same. To solve this wehad to ignore some
gene names. See table 4.1 for details of how many synonyms that had to be ignored.
Another important improvement is that this system allows users to select a subset of
PubMed by using MeSH terms in order to get the subnet of for example an organ or a
disease.

As explained in the tutorial an edge in a cooccurrence graph corresponds to how
often the gene pair has cooccurred. This integer is examinedin the chapter dealing
with validation and results. We can for example in figure 5.1 and figure 5.3 see that the
cutoff is important. In the nets generated here we can see that a nonzero cutoff makes
the power law link distribution clearer and that we move awayfrom making a net at
random if we have for example a cutoff at one instead of zero.

Recently, many gene nets have been generated using different methods. The best
way to evaluate the nets generated in this thesis must, of course, be to compare them
with other nets. The intuitive way to do this is to count the overlapping edges, but
unfortunately there is hardly even an overlap of one percent. Another standard way of
evaluating the nets is to look at P, R and F. The rule of thumb isthat an F above 0.6
is good. Again the results are horrible, as best only about 0.1. The apparently poor
results troubled us and we decided to find how much one could expect if one compared
two random nets. We came to the remarkable conclusion that, for trees, we could only
expect an overlap of two edges, no matter how big a tree one has! For two nets, both
with n nodes, with n+k and n+r edges we would expect E≈ 2(n+k)(n+r)

n2 overlapping

edges and a variance of V≈ 2(n+k)(n+r)(n2−2k)(n2−2r)
n6 for reasonably large values

of n. Do note that k and r may be negative. If we found X overlapping edges we
get a distance in sigmas from the null hypothesis ofX−E√

V
. This method uses an the

approximation of an urn - something that makes it natural to use for ER graphs since
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these graphs are very similar to using an urn. But since we do not compare pairs of ER
graphs the we made careful simulations of different classesof graphs and found that
there is practically no difference and that this approximation must be valid for at least
ER graphs and graphs having preferential attachment.

By using this method and by looking at the link distribution for different cutoffs we
found that the best cutoff is probably a cutoff eliminating all edges that only cooccur
once. We now ended up between 47 and 569 standard deviations from what we would
have expected if this was a random event. This is an incredible distance.

Of great importance is of course the genelists. These are lists of the genes that are
studied in combination with the given MeSH terms. The case that interests us the most
is when we selected the MeSH term arteriosclerosis and its offspring and got about
66000 abstracts. This scan resulted in a list including 1367genes. From four reviews
we, “by hand”, created lists of genes that were mentioned, including 10, 34, 52 and 31
genes. The union of the genes occurring in these four review lists had 96, and a list
that included all genes that occurred in at least two reviewshad 22 genes. The final list
considered is a list originating from gene expression data with 206 genes. When the
review lists were compared to the top 134 genes in our list theoverlap was between 13
and 19 standard deviations better than expected. The union list compared to the top 134
genes ended up 24 standard deviation from what we would have expected. We interpret
these results, and the fact that it was the list with only the top genes that scored the best,
as follows: if a gene is known to be connected to atherosclerosis someone will write a
paper about it. If the gene ends up in many papers the probability that it ends up in a
review increases. So if a gene is mentioned in many papers it (i): gets a higher score in
the toplist and (ii): ends up in a review.

When our genelists were compared to the list originating from a gene expression
study it was no longer the top genes that gave the best scores,nor was it the top 800
genes (all the genes that has cooccurred more than once). It was the full list that had
the best score: 3.6 standard deviations from what we could have expected. This must
be interpreted as the following: any gene that is relevant tocardiovascular disease has
an elevated probability of ending up in a paper since it mightbe found to be connected
to the disease. But only a few of these genes will end up in manypapers and the ones
that do are not always more relevant than the ones that do not.

In some cases the reviews mentioned genes with similar names, but that differed in
only a number such as the members of the mmp-family. In at least one case the gene
mmp3 occurred in one review and in another review five other mmp genes occurred
(mmp1, mmp2, mmp8, mmp9 and mmp13). Of course a human reader must interpret
this as a match since in at least two reviews by different authors the mmp-family occurs,
but the automated system comparing the genes does not count this as a match since the
word mmp3 is not the same word as mmp2! In order to count this situation as a match
we eliminated all numbers that occurred in any gene name so that all members starting
with mmp and ending with a number counts as the same gene. After this filter the hit
lists got lower scores compared to the reviews but a higher score compared to the gene
expression study. The lower score when compared to the reviews must be interpreted as
an indication that the genes found actually matched, even with the numbers. The higher
score, when compared to the gene expression study, is an indication of the opposite: the
genes studied and named match the correct family but not as often the correct member.

The over all conclusion of this final thesis is that text mining of selected abstracts
is a valid way to find a relevant gene net of an organ or disease.A discussion of the
extension of this work is therefore motivated, one must continue to expand the use of
textmining. To continue where this thesis ends is not hard, there are a number of issues
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that have not been fully investigated. For one thing the use of filters in the abstracts: are
the filters used relevant? Would we have found better resultswithout the filters? Could
we apply some other set of filters to improve the results? Whathappened if we start
filtering authors? Journals? Dates? We have no clear answer to any of these questions
but it is not unreasonable to assume that a filter, somehow taking care of roman numbers
and the overused greek letters alfa, beta, gamma and so on could improve any future
work. It could also be of valuable interest to instead of applying a very discrete cutoff
use a more probabilistic approach, to assign a high or low probability of the word
“gremlin” to be a gene or not. This whole thesis could be redone with some kind of
probabilistic approach in every assumption used.

Of great importance is also the quite new concepts of integrating results from dif-
ferent fields into one model, as explained in [Seo et al]. Herea cooccurrence net could
be a valuable complement if we are to use for example gene expression as another ma-
jor component. Any edge proposed by both sources must be moretrusted than an edge
from only one.

One good thing with text mining is that it can produce a lot of edges in a gene net,
but a drawback is that we cannot do novel findings by looking atonly cooccurrences:
the number of false negatives must be pretty elevated since we cannot find relations
that have not been studied. Perhaps there is a way to look at the gene net and from it
add edges in a controlled way by for example adding all possible edges in cluster like
structures and in such a manner get a better idea of all possible positives.

As final words we must repeat that the over all conclusion of this thesis is that text
mining of selected abstracts is a valid way to find a relevant gene net of an organ or
disease.
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A fool-proof method for sculpting an elephant: first,
get a huge block of marble; then you chip away ev-
erything that doesn’t look like an elephant.

Unknown A
The appendix

ALGORITHMS AND PSEUDO CODEis what this appendix is about. We displays
some of the algorithms used in creating the random graphs. A short section

with pseudo code illustrating the general structure of the program used to scan
for cooccurances is included as well as the entity relationsschema of the database.

A.1 Creating a random tree

Imagine we have a set of nodes N. With this set we wish to createthe random tree
T = {N, E} where E is the set of edges for T. We can easily create the set ofpotential
edges Ep by listing all possible pairs of nodes in N. The algorithm used to construct a
quasi ER graph is the following:

Step 0: Initially we create sets of nodes, one set for each node in N. These sets, Mi,
corresponds to with what other nodes the node i is connected (its neighbors and
its neighbors neighbors and so on). Initially: Mi = {i}, ∀i ∈ N.

Step 1: Pick an edge ei,j at random from Ep and remove it from Ep.

Step 2: If M i contains any element in Mj : discard ei,j . Otherwise we would create a
loop.

Step 3: If we keep ei,j , add it to E′, and for all elements p in Mi ∪ Mj let Mp =
Mi ∪ Mj . All nodes on each side of the new edge are now considered to be
communicating.

Step 4: If M 1 = N or |E′| = n− 1 or |Ep| = 0 break, else go to step 1.

A.2 Creating a random network

This algorithm creates quasi ER graphs that do differ from true ER graphs, but the
difference is so small that it really does not matter.

If we want to add k edges to a random tree this is one possible algorithm (If k is
negative we remove edges at random instead):

Step 0: Create a random tree as described above.

Step 1: Pick two nodes ni and nj 6= ni at random from N. Consider the edge e=
emin(i,j),max(j,i).
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j_name
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Figure A.1: A selected part of the entity-relation diagram of the database used to pro-
duce this thesis. The rectangles are entities (gene, synonym, abstract, journal and
MeSH term) with its attributes (for example a gene has the attributes hgncid, symbol
and description) in ellipses and the relations between entities are denoted by diamonds
(a synonym may for example have an occurrence with an abstract).

Step 2: If we already have the edge e discard it (for negative values of k we could here
remove it from the net instead).

Step 3: If we keep e, add it to E′. Set k:= k − 1 .

Step 4: If k = 0 or |E′| = (n−1)n
2 or |Ep| = 0 break, else go to step 1.

A.3 The database

The best way to describe a database is with its entity-relation diagram, this is displayed
in figure A.1.

A.4 Pseudo code
Of great importance in this thesis is the database where for example all occurrences
are stored. This little example of pseudo code will demonstrate the principles of going
from a set of abstracts to the database.

for each abstract in abstract_set:
for each meshterm in abstract:

add (meshterm,pmid) to database.abshasmesh
end for
for each synonym in synonymlist:

if synonym is included in body or title of abstract:
translate synonym to gene
add (gene,pmid) to database.occurance
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end if
end for

end for

The implementation above is heavily suboptimal! For example: there are often less
than 40000 words in an abstract so using all synonyms to scan is a bad idea. Instead
one should use look for each word in the abstract in a hashtable of synonyms.

The other important part is of course going from a set of MeSH terms to a list of
cooccurrences:

create empty hashtable pmids of integer

create empty hashtable cooccurrences of pairs of strings to integer

for each meshterm in meshterm_set:
from database.abshasmesh(meshterm) get temp_pmids
for each pmid in temp_pmids:

if pmid not in pmids:
to pmids add pmid

end if
end for

end for

for each pmid in pmids:
from database.occurance get temp_genes
if temp_genes has more than 2 items:

for all pairs pair of items in temp_genes
sort(pair)
if cooccurrences has pair:

cooccurrences(pair) += 1
else:

cooccurrences(pair) = 1
end if

end for
end if

end for
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